110 resultados para Propagation prediction models
Resumo:
As organizations reach higher levels of Business Process Management maturity, they tend to accumulate large collections of process models. These repositories may contain thousands of activities and be managed by different stakeholders with varying skills and responsibilities. However, while being of great value, these repositories induce high management costs. Thus, it becomes essential to keep track of the various model versions as they may mutually overlap, supersede one another and evolve over time. We propose an innovative versioning model and associated storage structure, specifically designed to maximize sharing across process model versions, and to automatically handle change propagation. The focal point of this technique is to version single process model fragments, rather than entire process models. Indeed empirical evidence shows that real-life process model repositories have numerous duplicate fragments. Experiments on two industrial datasets confirm the usefulness of our technique.
Resumo:
In this paper, two ideal formation models of serrated chips, the symmetric formation model and the unilateral right-angle formation model, have been established for the first time. Based on the ideal models and related adiabatic shear theory of serrated chip formation, the theoretical relationship among average tooth pitch, average tooth height and chip thickness are obtained. Further, the theoretical relation of the passivation coefficient of chip's sawtooth and the chip thickness compression ratio is deduced as well. The comparison between these theoretical prediction curves and experimental data shows good agreement, which well validates the robustness of the ideal chip formation models and the correctness of the theoretical deducing analysis. The proposed ideal models may have provided a simple but effective theoretical basis for succeeding research on serrated chip morphology. Finally, the influences of most principal cutting factors on serrated chip formation are discussed on the basis of a series of finite element simulation results for practical advices of controlling serrated chips in engineering application.
Resumo:
Autonomous underwater gliders are robust and widely-used ocean sampling platforms that are characterized by their endurance, and are one of the best approaches to gather subsurface data at the appropriate spatial resolution to advance our knowledge of the ocean environment. Gliders generally do not employ sophisticated sensors for underwater localization, but instead dead-reckon between set waypoints. Thus, these vehicles are subject to large positional errors between prescribed and actual surfacing locations. Here, we investigate the implementation of a large-scale, regional ocean model into the trajectory design for autonomous gliders to improve their navigational accuracy. We compute the dead-reckoning error for our Slocum gliders, and compare this to the average positional error recorded from multiple deployments conducted over the past year. We then compare trajectory plans computed on-board the vehicle during recent deployments to our prediction-based trajectory plans for 140 surfacing occurrences.
Resumo:
Data collection using Autonomous Underwater Vehicles (AUVs) is increasing in importance within the oceano- graphic research community. Contrary to traditional moored or static platforms, mobile sensors require intelligent planning strategies to manoeuvre through the ocean. However, the ability to navigate to high-value locations and collect data with specific scientific merit is worth the planning efforts. In this study, we examine the use of ocean model predictions to determine the locations to be visited by an AUV, and aid in planning the trajectory that the vehicle executes during the sampling mission. The objectives are: a) to provide near-real time, in situ measurements to a large-scale ocean model to increase the skill of future predictions, and b) to utilize ocean model predictions as a component in an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. We present an algorithm designed to generate paths for AUVs to track a dynamically evolving ocean feature utilizing ocean model predictions. This builds on previous work in this area by incorporating the predicted current velocities into the path planning to assist in solving the 3-D motion planning problem of steering an AUV between two selected locations. We present simulation results for tracking a fresh water plume by use of our algorithm. Additionally, we present experimental results from field trials that test the skill of the model used as well as the incorporation of the model predictions into an AUV trajectory planner. These results indicate a modest, but measurable, improvement in surfacing error when the model predictions are incorporated into the planner.
Resumo:
Prognostics and asset life prediction is one of research potentials in engineering asset health management. We previously developed the Explicit Hazard Model (EHM) to effectively and explicitly predict asset life using three types of information: population characteristics; condition indicators; and operating environment indicators. We have formerly studied the application of both the semi-parametric EHM and non-parametric EHM to the survival probability estimation in the reliability field. The survival time in these models is dependent not only upon the age of the asset monitored, but also upon the condition and operating environment information obtained. This paper is a further study of the semi-parametric and non-parametric EHMs to the hazard and residual life prediction of a set of resistance elements. The resistance elements were used as corrosion sensors for measuring the atmospheric corrosion rate in a laboratory experiment. In this paper, the estimated hazard of the resistance element using the semi-parametric EHM and the non-parametric EHM is compared to the traditional Weibull model and the Aalen Linear Regression Model (ALRM), respectively. Due to assuming a Weibull distribution in the baseline hazard of the semi-parametric EHM, the estimated hazard using this model is compared to the traditional Weibull model. The estimated hazard using the non-parametric EHM is compared to ALRM which is a well-known non-parametric covariate-based hazard model. At last, the predicted residual life of the resistance element using both EHMs is compared to the actual life data.
Resumo:
Developing safe and sustainable road systems is a common goal in all countries. Applications to assist with road asset management and crash minimization are sought universally. This paper presents a data mining methodology using decision trees for modeling the crash proneness of road segments using available road and crash attributes. The models quantify the concept of crash proneness and demonstrate that road segments with only a few crashes have more in common with non-crash roads than roads with higher crash counts. This paper also examines ways of dealing with highly unbalanced data sets encountered in the study.
Resumo:
As organizations reach higher levels of Business Process Management maturity, they tend to accumulate large collections of process models. These repositories may contain thousands of activities and be managed by different stakeholders with varying skills and responsibilities. However, while being of great value, these repositories induce high management costs. Thus, it becomes essential to keep track of the various model versions as they may mutually overlap, supersede one another and evolve over time. We propose an innovative versioning model, and associated storage structure, specifically designed to maximize sharing across process models and process model versions, reduce conflicts in concurrent edits and automatically handle controlled change propagation. The focal point of this technique is to version single process model fragments, rather than entire process models. Indeed empirical evidence shows that real-life process model repositories have numerous duplicate fragments. Experiments on two industrial datasets confirm the usefulness of our technique.
Resumo:
Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.
Resumo:
Asset health inspections can produce two types of indicators: (1) direct indicators (e.g. the thickness of a brake pad, and the crack depth on a gear) which directly relate to a failure mechanism; and (2) indirect indicators (e.g. the indicators extracted from vibration signals and oil analysis data) which can only partially reveal a failure mechanism. While direct indicators enable more precise references to asset health condition, they are often more difficult to obtain than indirect indicators. The state space model provides an efficient approach to estimating direct indicators by using indirect indicators. However, existing state space models to estimate direct indicators largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires fixed inspection intervals. The discrete state assumption entails discretising continuous degradation indicators, which often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This paper proposes a state space model without these assumptions. Monte Carlo-based algorithms are developed to estimate the model parameters and the remaining useful life. These algorithms are evaluated for performance using numerical simulations through MATLAB. The result shows that both the parameters and the remaining useful life are estimated accurately. Finally, the new state space model is used to process vibration and crack depth data from an accelerated test of a gearbox. During this application, the new state space model shows a better fitness result than the state space model with linear and Gaussian assumption.
Resumo:
Background In order to provide insights into the complex biochemical processes inside a cell, modelling approaches must find a balance between achieving an adequate representation of the physical phenomena and keeping the associated computational cost within reasonable limits. This issue is particularly stressed when spatial inhomogeneities have a significant effect on system's behaviour. In such cases, a spatially-resolved stochastic method can better portray the biological reality, but the corresponding computer simulations can in turn be prohibitively expensive. Results We present a method that incorporates spatial information by means of tailored, probability distributed time-delays. These distributions can be directly obtained by single in silico or a suitable set of in vitro experiments and are subsequently fed into a delay stochastic simulation algorithm (DSSA), achieving a good compromise between computational costs and a much more accurate representation of spatial processes such as molecular diffusion and translocation between cell compartments. Additionally, we present a novel alternative approach based on delay differential equations (DDE) that can be used in scenarios of high molecular concentrations and low noise propagation. Conclusions Our proposed methodologies accurately capture and incorporate certain spatial processes into temporal stochastic and deterministic simulations, increasing their accuracy at low computational costs. This is of particular importance given that time spans of cellular processes are generally larger (possibly by several orders of magnitude) than those achievable by current spatially-resolved stochastic simulators. Hence, our methodology allows users to explore cellular scenarios under the effects of diffusion and stochasticity in time spans that were, until now, simply unfeasible. Our methodologies are supported by theoretical considerations on the different modelling regimes, i.e. spatial vs. delay-temporal, as indicated by the corresponding Master Equations and presented elsewhere.
Resumo:
Overall, computer models and simulations have a rather disappointing record within the management sciences as a tool for predicting the future. Social and market environments can be influenced by an overwhelming number of variables, and it is therefore difficult to use computer models to make forecasts or to test hypotheses concerning the relationship between individual behaviours and macroscopic outcomes. At the same time, however, advocates of computer models argue that they can be used to overcome the human mind's inability to cope with several complex variables simultaneously or to understand concepts that are highly counterintuitive. This paper seeks to bridge the gap between these two perspectives by suggesting that management research can indeed benefit from computer models by using them to formulate fruitful hypotheses.
Resumo:
The availability of bridges is crucial to people’s daily life and national economy. Bridge health prediction plays an important role in bridge management because maintenance optimization is implemented based on prediction results of bridge deterioration. Conventional bridge deterioration models can be categorised into two groups, namely condition states models and structural reliability models. Optimal maintenance strategy should be carried out based on both condition states and structural reliability of a bridge. However, none of existing deterioration models considers both condition states and structural reliability. This study thus proposes a Dynamic Objective Oriented Bayesian Network (DOOBN) based method to overcome the limitations of the existing methods. This methodology has the ability to act upon as a flexible unifying tool, which can integrate a variety of approaches and information for better bridge deterioration prediction. Two demonstrative case studies are conducted to preliminarily justify the feasibility of the methodology
Resumo:
Accurate reliability prediction for large-scale, long lived engineering is a crucial foundation for effective asset risk management and optimal maintenance decision making. However, a lack of failure data for assets that fail infrequently, and changing operational conditions over long periods of time, make accurate reliability prediction for such assets very challenging. To address this issue, we present a Bayesian-Marko best approach to reliability prediction using prior knowledge and condition monitoring data. In this approach, the Bayesian theory is used to incorporate prior information about failure probabilities and current information about asset health to make statistical inferences, while Markov chains are used to update and predict the health of assets based on condition monitoring data. The prior information can be supplied by domain experts, extracted from previous comparable cases or derived from basic engineering principles. Our approach differs from existing hybrid Bayesian models which are normally used to update the parameter estimation of a given distribution such as the Weibull-Bayesian distribution or the transition probabilities of a Markov chain. Instead, our new approach can be used to update predictions of failure probabilities when failure data are sparse or nonexistent, as is often the case for large-scale long-lived engineering assets.
Resumo:
A wireless sensor network system must have the ability to tolerate harsh environmental conditions and reduce communication failures. In a typical outdoor situation, the presence of wind can introduce movement in the foliage. This motion of vegetation structures causes large and rapid signal fading in the communication link and must be accounted for when deploying a wireless sensor network system in such conditions. This thesis examines the fading characteristics experienced by wireless sensor nodes due to the effect of varying wind speed in a foliage obstructed transmission path. It presents extensive measurement campaigns at two locations with the approach of a typical wireless sensor networks configuration. The significance of this research lies in the varied approaches of its different experiments, involving a variety of vegetation types, scenarios and the use of different polarisations (vertical and horizontal). Non–line of sight (NLoS) scenario conditions investigate the wind effect based on different vegetation densities including that of the Acacia tree, Dogbane tree and tall grass. Whereas the line of sight (LoS) scenario investigates the effect of wind when the grass is swaying and affecting the ground-reflected component of the signal. Vegetation type and scenarios are envisaged to simulate real life working conditions of wireless sensor network systems in outdoor foliated environments. The results from the measurements are presented in statistical models involving first and second order statistics. We found that in most of the cases, the fading amplitude could be approximated by both Lognormal and Nakagami distribution, whose m parameter was found to depend on received power fluctuations. Lognormal distribution is known as the result of slow fading characteristics due to shadowing. This study concludes that fading caused by variations in received power due to wind in wireless sensor networks systems are found to be insignificant. There is no notable difference in Nakagami m values for low, calm, and windy wind speed categories. It is also shown in the second order analysis, the duration of the deep fades are very short, 0.1 second for 10 dB attenuation below RMS level for vertical polarization and 0.01 second for 10 dB attenuation below RMS level for horizontal polarization. Another key finding is that the received signal strength for horizontal polarisation demonstrates more than 3 dB better performances than the vertical polarisation for LoS and near LoS (thin vegetation) conditions and up to 10 dB better for denser vegetation conditions.