130 resultados para Plantations spacing
Resumo:
Soluble organic matter derived from exotic Pinus species has been shown to form stronger complexes with iron (Fe) than that derived from most native Australian species. It has also been proposed that the establishment of exotic Pinus plantations in coastal southeast Queensland may have enhanced the solubility of Fe in soils by increasing the amount of organically complexed Fe, but this remains inconclusive. In this study we test whether the concentration and speciation of Fe in soil water from Pinus plantations differs significantly from soil water from native vegetation areas. Both Fe redox speciation and the interaction between Fe and dissolved organic matter (DOM) were considered; Fe - DOM interaction was assessed using the Stockholm Humic Model. Iron concentrations (mainly Fe 2+) were greatest in the soil waters with the greatest DOM content collected from sandy podosols (Podzols), where they are largely controlled by redox potential. Iron concentrations were small in soil waters from clay and iron oxide-rich soils, in spite of similar redox potentials. This condition is related to stronger sorption on to the reactive clay and iron oxide mineral surfaces in these soils, which reduces the amount of DOM available for electron shuttling and microbial metabolism, restricting reductive dissolution of Fe. Vegetation type had no significant influence on the concentration and speciation of iron in soil waters, although DOM from Pinus sites had greater acidic functional group site densities than DOM from native vegetation sites. This is because Fe is mainly in the ferrous form, even in samples from the relatively well-drained podosols. However, modelling suggests that Pinus DOM can significantly increase the amount of truly dissolved ferric iron remaining in solution in oxic conditions. Therefore, the input of ferrous iron together with Pinus DOM to surface waters may reduce precipitation of hydrous ferric oxides (ferrihydrite) and increase the flux of dissolved Fe out of the catchment. Such inputs of iron are most probably derived from podosols planted with Pinus.
Resumo:
The Kyoto Protocol recognises trees as a sink of carbon and a valid means to offset greenhouse gas emissions and meet internationally agreed emissions targets. This study details biological carbon sequestration rates for common plantation species Araucaria cunninghamii (hoop pine), Eucalyptus cloeziana, Eucalyptus argophloia, Pinus elliottii and Pinus caribaea var hondurensis and individual land areas required in north-eastern Australia to offset greenhouse gas emissions of 1000tCO 2e. The 3PG simulation model was used to predict above and below-ground estimates of biomass carbon for a range of soil productivity conditions for six representative locations in agricultural regions of north-eastern Australia. The total area required to offset 1000tCO 2e ranges from 1ha of E. cloeziana under high productivity conditions in coastal North Queensland to 45ha of hoop pine in low productivity conditions of inland Central Queensland. These areas must remain planted for a minimum of 30years to meet the offset of 1000tCO 2e.
Resumo:
This paper investigates the effects of lane-changing in driver behavior by measuring (i) the induced transient behavior and (ii) the change in driver characteristics, i.e., changes in driver response time and minimum spacing. We find that the transition largely consists of a pre-insertion transition and a relaxation process. These two processes are different but can be reasonably captured with a single model. The findings also suggest that lane-changing induces a regressive effect on driver characteristics: a timid driver (characterized by larger response time and minimum spacing) tends to become less timid and an aggressive driver less aggressive. We offer an extension to Newell’s car-following model to describe this regressive effect and verify it using vehicle trajectory data.
Resumo:
Background Women change contraception as they try to conceive, space births, and limit family size. This longitudinal analysis examines contraception changes after reproductive events such as birth, miscarriage or termination among Australian women born from 1973 to 1978 to identify potential opportunities to increase the effectiveness of contraceptive information and service provision. Methods Between 1996 and 2009, 5,631 Australian women randomly sampled from the Australian universal health insurance (Medicare) database completed five self-report postal surveys. Three longitudinal logistic regression models were used to assess the associations between reproductive events (birth only, birth and miscarriage, miscarriage only, termination only, other multiple events, and no new event) and subsequent changes in contraceptive use (start using, stop using, switch method) compared with women who continued to use the same method. Results After women experienced only a birth, or a birth and a miscarriage, they were more likely to start using contraception. Women who experienced miscarriages were more likely to stop using contraception. Women who experienced terminations were more likely to switch methods. There was a significant interaction between reproductive events and time indicating more changes in contraceptive use as women reach their mid-30s. Conclusion Contraceptive use increases after the birth of a child, but decreases after miscarriage indicating the intention for family formation and spacing between children. Switching contraceptive methods after termination suggests these pregnancies were unintended and possibly due to contraceptive failure. Women’s contact with health professionals around the time of reproductive events provides an opportunity to provide contraceptive services.
Resumo:
The elastic properties of 1D nanostructures such as nanowires are often measured experimentally through actuation of the nanowire at its resonance frequency, and then relating the resonance frequency to the elastic stiffness using elementary beam theory. In the present work, we utilize large scale molecular dynamics simulations to report a novel beat phenomenon in [110]oriented Ag nanowires. The beat phenomenon is found to arise from the asymmetry of the lattice spacing in the orthogonal elementary directions of the [110] nanowire, i.e. the [-110] and [001] directions, which results in two different principal moments of inertia. Because of this, actuations imposed along any other direction are found to decompose into two orthogonal vibrational components based on the actuation angle relative to these two elementary directions, with this phenomenon being generalizable to <110> FCC nanowires of different materials (Cu, Au, Ni, Pd and Pt). The beat phenomenon is explained using a discrete moment of inertia model based on the hard sphere assumption, the model is utilized to show that surface effects enhance the beat phenomenon, while the effect is reduced with increasing nanowires cross-sectional size or aspect ratio. Most importantly, due to the existence of the beat phenomena, we demonstrate that in resonance experiments only a single frequency component is expected to be observed, particularly when the damping ratio is relatively large or very small. Furthermore, for a large range of actuation angles, the lower frequency is more likely to be detected than the higher one, which implies that experimental predictions of Young’s modulus obtained from resonance may in fact be under predictions. The present study therefore has significant implications for experimental interpretations of Young’s modulus as obtained via resonance testing.
Resumo:
Utilization of multiport-antennas represents an appropriate way for the mitigation of multi-path fading in wireless communication systems. However, to obtain low correlation between the signals from different antenna ports and to prevent gain reduction by cross-talk, large antenna elements spacing is expected. Polarization diversity allows signal separation even with small antenna spacing. Although it is effective, polarization diversity alone does not suffice once the number of antennas exceeds the number of orthogonal polarizations. This paper presents an approach which combines a novel array concept with the use of dual polarization. The theory is verified by a compact dual polarized patch antenna array, which consists of four elements and a decoupling network.
Resumo:
Dual-mode vibration of nanowires has been reported experimentally through actuation of the nanowire at its resonance frequency, which is expected to open up a variety of new modalities for the NEMS that could operate in the nonlinear regime. In the present work, we utilize large scale molecular dynamics simulations to investigate the dual-mode vibration of <110> Ag nanowires with triangular, rhombic and truncated rhombic cross-sections. By incorporating the generalized Young-Laplace equation into Euler-Bernoulli beam theory, the influence of surface effects on the dual-mode vibration is studied. Due to the different lattice spacing in principal axes of inertia of the {110} atomic layers, the NW is also modeled as a discrete system to reveal the influence from such specific atomic arrangement. It is found that the <110> Ag NW will under a dual-mode vibration if the actuation direction is deviated from the two principal axes of inertia. The predictions of the two first mode natural frequencies by the classical beam model appear underestimated comparing with the MD results, which are found to be enhanced by the discrete model. Particularly, the predictions by the beam theory with the contribution of surface effects are uniformly larger than the classical beam model, which exhibit better agreement with MD results for larger cross-sectional size. However, for ultrathin NWs, current consideration of surface effects is still experiencing certain inaccuracy. In all, for all different cross-sections, the inclusion of surface effects is found to reduce the difference between the two first mode natural frequencies. This trend is observed consistent with MD results. This study provides a first comprehensive investigation on the dual-mode vibration of <110> oriented Ag NWs, which is supposed to benefit the applications of NWs that acting as a resonating beam.
Performance of elite seated discus throwers in F30s classes : part II: does feet positioning matter?
Resumo:
Background: Studies on the relationship between performance and design of the throwing frame have been limited. Part I provided only a description of the whole body positioning. Objectives: The specific objectives were (a) to benchmark feet positioning characteristics (i.e. position, spacing and orientation) and (b) to investigate the relationship between performance and these characteristics for male seated discus throwers in F30s classes. Study Design: Descriptive analysis. Methods: A total of 48 attempts performed by 12 stationary discus throwers in F33 and F34 classes during seated discus throwing event of 2002 International Paralympic Committee Athletics World Championships were analysed in this study. Feet positioning was characterised by tridimensional data of the front and back feet position as well as spacing and orientation corresponding to the distance between and the angle made by both feet, respectively. Results: Only 4 of 30 feet positioning characteristics presented a coefficient correlation superior to 0.5, including the feet spacing on mediolateral and anteroposterior axes in F34 class as well as the back foot position and feet spacing on mediolateral axis in F33 class. Conclusions: This study provided key information for a better understanding of the interaction between throwing technique of elite seated throwers and their throwing frame.
Resumo:
In previous Analytical Electron Microscope studies of extraterrestrial Chondritic Porous Aggregate (CPA) W7029* A, we have reported on the presence of layer silicates(Rietmeijer and Mackinnon, 1984a; Mackinnon and Rietmeijer, 1983) and metal oxides (Rietmeijer and Mackinnon, 1984a; Mackinnon and Rietmeijer, 1984). We present here a continuation ofthis detailed mineralogical study and propose a scenario which may account for the variety and types of phases observed in this CPA. At least 50% ofCPA W7029*A is carbonaceous material, primarily poorly graphitised carbon (POC) with morphologies similar to POC in acid residues of carbonaceous chondrites (Smith and Busek, 1981; Lumpkin, 1983). The basal spacing of graphite in CPA W7029*A ranges from 3.47-3.52 A and compares with doo, of graphite in the Allende residues (Smith and Buseck, 1981; Lumpkin, 1983). Low-temperature phases comprise - 20% of CPA W7029*A and include layer silicates, Bi,O" a-FeOOH(Rietmeijer and Mackinnon, 1984a; Mackinnon and Rietmeijer, 1983), BaSO.,.Ti.O, plates, pentlandite-violarite and bornite. Clusters of Mg-rich olivine and pyroxene make up - 12% of the aggregate...
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange section developed in Australia with a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. The LSB is subjected to a relatively new Lateral Distortional Buckling (LDB) mode when used as flexural members. Unlike the commonly observed lateral torsional buckling, lateral distortional buckling of LSBs is characterised by cross sectional change due to web distortion. Lateral distortional buckling causes significant moment capacity reduction for LSBs with intermediate spans. Therefore a detailed investigation was undertaken to determine the methods of reducing the effects of lateral distortional buckling in LSB flexural members. For this purpose the use of web stiffeners was investigated using finite element analyses of LSBs with different web stiffener spacing and sizes. It was found that the use of 5 mm steel plate stiffeners welded or screwed to the inner faces of the top and bottom flanges at third span points considerably reduced the lateral distortional buckling effects in LSBs. Suitable design rules were then developed to calculate the enhanced elastic lateral distortional buckling moments and the higher ultimate moment capacities of LSBs with the chosen web stiffener arrangement. This paper presents the details of this investigation and the results.
Resumo:
In recent years, organoclays have become widely used in many industrial applications, and particularly they have been applied as adsorbents for water purification (de Paiva et al., 2008; Zhou et al., 2008; Park et al., 2011). When the organoclays are enhanced by intercalation of cationic surfactant molecules, the surface properties are altered from hydrophilic to highly hydrophobic. These changes facilitate their industrial applications which are strongly dependent on the structural properties of organoclays (Koh and Dixon, 2001; Zeng et al., 2004; Cui et al., 2007). Thus a better understanding of the configuration and structural change in the organoclays by thermogravimetric analysis (TG) is essential. It has been proven that the TG is very useful for the study of complex minerals, modified minerals, and nanomaterials (Laachachi et al., 2005; Palmer et al., 2011; Park et al., in press, 2011). Therefore, the current investigation involves the thermal stability of a montmorillonite intercalated with two types of cationic surfactants: dodecyltrimethylammonium bromide (DDTMA) and didodecyldimethylammonium bromide (DDDMA) using TG. The modification of montmorillonite results in an increase in the interlayer or basal spacing and enhances the environmental and industrial application of the obtained organoclay.
Resumo:
Small-angle and ultra-small-angle neutron scattering (SANS and USANS), low-pressure adsorption (N2 and CO2), and high-pressure mercury intrusion measurements were performed on a suite of North American shale reservoir samples providing the first ever comparison of all these techniques for characterizing the complex pore structure of shales. The techniques were used to gain insight into the nature of the pore structure including pore geometry, pore size distribution and accessible versus inaccessible porosity. Reservoir samples for analysis were taken from currently-active shale gas plays including the Barnett, Marcellus, Haynesville, Eagle Ford, Woodford, Muskwa, and Duvernay shales. Low-pressure adsorption revealed strong differences in BET surface area and pore volumes for the sample suite, consistent with variability in composition of the samples. The combination of CO2 and N2 adsorption data allowed pore size distributions to be created for micro–meso–macroporosity up to a limit of �1000 Å. Pore size distributions are either uni- or multi-modal. The adsorption-derived pore size distributions for some samples are inconsistent with mercury intrusion data, likely owing to a combination of grain compression during high-pressure intrusion, and the fact that mercury intrusion yields information about pore throat rather than pore body distributions. SANS/USANS scattering data indicate a fractal geometry (power-law scattering) for a wide range of pore sizes and provide evidence that nanometer-scale spatial ordering occurs in lower mesopore–micropore range for some samples, which may be associated with inter-layer spacing in clay minerals. SANS/USANS pore radius distributions were converted to pore volume distributions for direct comparison with adsorption data. For the overlap region between the two methods, the agreement is quite good. Accessible porosity in the pore size (radius) range 5 nm–10 lm was determined for a Barnett shale sample using the contrast matching method with pressurized deuterated methane fluid. The results demonstrate that accessible porosity is pore-size dependent.
Resumo:
A new deterministic method for predicting simultaneous inbreeding coefficients at three and four loci is presented. The method involves calculating the conditional probability of IBD (identical by descent) at one locus given IBD at other loci, and multiplying this probability by the prior probability of the latter loci being simultaneously IBD. The conditional probability is obtained applying a novel regression model, and the prior probability from the theory of digenic measures of Weir and Cockerham. The model was validated for a finite monoecious population mating at random, with a constant effective population size, and with or without selfing, and also for an infinite population with a constant intermediate proportion of selfing. We assumed discrete generations. Deterministic predictions were very accurate when compared with simulation results, and robust to alternative forms of implementation. These simultaneous inbreeding coefficients were more sensitive to changes in effective population size than in marker spacing. Extensions to predict simultaneous inbreeding coefficients at more than four loci are now possible.
Resumo:
Sedimentary palygorskite (SP) and hydrothermal palygorskite (HP) were characterized by XRF, TG/DSC, andXRD. The total iron and dissociative iron in palygorskite were detected using spectrophotometry. The results showed that about 3.57 wt% of Fe2O3 was detected in SP in contrast with 0.4 wt% in HP. SP was a Fe-substituted palygorskite, and HP was an Al-rich palygorskite. The occurrence of Fe substitution in SP resulted in two mass loss steps of coordinated water and resulted in a larger d spacing. The SP showed greater thermal stability than the HP. It was proposed the change of (200) diffraction peak and (240) diffraction peak reflect changes of tetrahedral and octahedral structures in palygorskite.
Resumo:
Thermogravimetric analysis (TG) and powder X-ray diffraction (PXRD) were used to study some selected Mg/Al and Zn/Al layered double hydroxides (LDHs) prepared by co-precipitation. A Mg/Al hydrotalcite was investigated before and after reformation in fluoride and nitrate solutions. Little change in the TG or PXRD patterns was observed. It was proposed that successful intercalation of nitrate anions has occurred. However, the absence of any change in the d(003) interlayer spacing suggests that fluoride anions were not intercalated between the LDH layers. Any fluoride anions that were removed from solution are most likely adsorbed onto the outer surfaces of the hydrotalcite. As fluoride removal was not quantified it is not possible to confirm that this has happened without further experimentation. Carbonate is probably intercalated into the interlayer of these hydrotalcites, as well as fluoride or nitrate. The carbonate most likely originates from either incomplete decarbonation during thermal activation or adsorption from the atmosphere or dissolved in the deionised water. Small and large scale co-precipitation syntheses of a Zn/Al LDH were also investigated to determine if there was any change in the product. While the small scale experiment produced a good quality LDH of reasonable purity; the large scale synthesis resulted in several additional phases. Imprecise measurement and difficulty in handling the large quantities of reagents appeared to be sufficient to alter the reaction conditions causing a mixture of phases to be formed.