89 resultados para Planetary quarantine.
Resumo:
Model calculations, which include the effects of turbulence during subsequent solar nebula evolution after the collapse of a cool interstellar cloud, can reconcile some of the apparent differences between physical parameters obtained from theory and the cosmochemical record. Two important aspects of turbulence in a protoplanetary cloud include the growth and transport of solid grains. While the physical effects of the process can be calculated and compared with the probable remains of the nebula formulation period, the more subtle effects on primitive grains and their survival in the cosmochemical record cannot be readily evaluated. The environment offered by the Space Station (or Space Shuttle) experimental facility can provide the vacuum and low gravity conditions for sufficiently long time periods required for experimental verification of these cosmochemical models.
Resumo:
The deformation of rocks is commonly intimately associated with metamorphic reactions. This paper is a step towards understanding the behaviour of fully coupled, deforming, chemically reacting systems by considering a simple example of the problem comprising a single layer system with elastic-power law viscous constitutive behaviour where the deformation is controlled by the diffusion of a single chemical component that is produced during a metamorphic reaction. Analysis of the problem using the principles of non-equilibrium thermodynamics allows the energy dissipated by the chemical reaction-diffusion processes to be coupled with the energy dissipated during deformation of the layers. This leads to strain-rate softening behaviour and the resultant development of localised deformation which in turn nucleates buckles in the layer. All such diffusion processes, in leading to Herring-Nabarro, Coble or “pressure solution” behaviour, are capable of producing mechanical weakening through the development of a “chemical viscosity”, with the potential for instability in the deformation. For geologically realistic strain rates these chemical feed-back instabilities occur at the centimetre to micron scales, and so produce structures at these scales, as opposed to thermal feed-back instabilities that become important at the 100–1000 m scales.
Resumo:
Keeping exotic plant pests out of our country relies on good border control or quarantine. However with increasing globalization and mobilization some things slip through. Then the back up systems become important. This can include an expensive form of surveillance that purposively targets particular pests. A much wider net is provided by general surveillance, which is assimilated into everyday activities, like farmers checking the health of their crops. In fact farmers and even home gardeners have provided a front line warning system for some pests (eg European wasp) that could otherwise have wreaked havoc. Mathematics is used to model how surveillance works in various situations. Within this virtual world we can play with various surveillance and management strategies to "see" how they would work, or how to make them work better. One of our greatest challenges is estimating some of the input parameters : because the pest hasn't been here before, it's hard to predict how well it might behave: establishing, spreading, and what types of symptoms it might express. So we rely on experts to help us with this. This talk will look at the mathematical, psychological and logical challenges of helping experts to quantify what they think. We show how the subjective Bayesian approach is useful for capturing expert uncertainty, ultimately providing a more complete picture of what they think... And what they don't!
Resumo:
Bactrocera dorsalis (Hendel), Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, and Bactrocera carambolae Drew & Hancock are pest members within the B. dorsalis species complex of tropical fruit flies. The species status of these taxa is unclear and this confounds quarantine, pest management, and general research. Mating studies carried out under uniform experimental conditions are required as part of resolving their species limits. These four taxa were collected from the wild and established as laboratory cultures for which we subsequently determined levels of prezygotic compatibility, assessed by field cage mating trials for all pair-wise combinations. We demonstrate random mating among all pair-wise combinations involving B. dorsalis, B. papayae, and B. philippinensis. B. carambolae was relatively incompatible with each of these species as evidenced by nonrandom mating for all crosses. Reasons for incompatibility involving B. carambolae remain unclear; however, we observed differences in the location of couples in the field cage for some comparisons. Alongside other factors such as pheromone composition or other courtship signals, this may lead to reduced interspecific mating compatibility with B. carambolae. These data add to evidence that B. dorsalis, B. papayae, and B. philippinensis represent the same biological species, while B. carambolae remains sufficiently different to maintain its current taxonomic identity. This poses significant implications for this group's systematics, impacting on pest management, and international trade.
Resumo:
Bactrocera dorsalis sensu stricto, B. papayae, B. philippinensis and B. carambolae are serious pest fruit fly species of the B. dorsalis complex that predominantly occur in south-east Asia and the Pacific. Identifying molecular diagnostics has proven problematic for these four taxa, a situation that cofounds biosecurity and quarantine efforts and which may be the result of at least some of these taxa representing the same biological species. We therefore conducted a phylogenetic study of these four species (and closely related outgroup taxa) based on the individuals collected from a wide geographic range; sequencing six loci (cox1, nad4-3′, CAD, period, ITS1, ITS2) for approximately 20 individuals from each of 16 sample sites. Data were analysed within maximum likelihood and Bayesian phylogenetic frameworks for individual loci and concatenated data sets for which we applied multiple monophyly and species delimitation tests. Species monophyly was measured by clade support, posterior probability or bootstrap resampling for Bayesian and likelihood analyses respectively, Rosenberg's reciprocal monophyly measure, P(AB), Rodrigo's (P(RD)) and the genealogical sorting index, gsi. We specifically tested whether there was phylogenetic support for the four 'ingroup' pest species using a data set of multiple individuals sampled from a number of populations. Based on our combined data set, Bactrocera carambolae emerges as a distinct monophyletic clade, whereas B. dorsalis s.s., B. papayae and B. philippinensis are unresolved. These data add to the growing body of evidence that B. dorsalis s.s., B. papayae and B. philippinensis are the same biological species, which poses consequences for quarantine, trade and pest management.
Resumo:
This study investigated potential markers within chromosomal, mitochondrial DNA (mtDNA) and ribosomal RNA (rRNA) with the aim of developing a DNA based method to allow differentiation between animal species. Such discrimination tests may have important applications in the forensic science, agriculture, quarantine and customs fields. DNA samples from five different animal individuals within the same species for 10 species of animal (including human) were analysed. DNA extraction and quantitation followed by PCR amplification and GeneScan visualisation formed the basis of the experimental analysis. Five gene markers from three different types of genes were investigated. These included genomic markers for the β-actin and TP53 tumor suppressor gene. Mitochondrial DNA markers, designed by Bataille et al. [Forensic Sci. Int. 99 (1999) 165], examined the Cytochrome b gene and Hypervariable Displacement Loop (D-Loop) region. Finally, a ribosomal RNA marker for the 28S rRNA gene optimised by Naito et al. [J. Forensic Sci. 37 (1992) 396] was used as a possible marker for speciation. Results showed a difference of only several base pairs between all species for the β-actin and 28S markers, with the exception of Sus scrofa (pig) β-actin fragment length, which produced a significantly smaller fragment. Multiplexing of Cytochrome b and D-Loop markers gave limited species information, although positive discrimination of human DNA was evident. The most specific and discriminatory results were shown using the TP53 gene since this marker produced greatest fragment size differences between animal species studied. Sample differentiation for all species was possible following TP53 amplification, suggesting that this gene could be used as a potential animal species identifier.
Resumo:
This work aims at developing a planetary rover capable of acting as an assistant astrobiologist: making a preliminary analysis of the collected visual images that will help to make better use of the scientists time by pointing out the most interesting pieces of data. This paper focuses on the problem of detecting and recognising particular types of stromatolites. Inspired by the processes actual astrobiologists go through in the field when identifying stromatolites, the processes we investigate focus on recognising characteristics associated with biogenicity. The extraction of these characteristics is based on the analysis of geometrical structure enhanced by passing the images of stromatolites into an edge-detection filter and its Fourier Transform, revealing typical spatial frequency patterns. The proposed analysis is performed on both simulated images of stromatolite structures and images of real stromatolites taken in the field by astrobiologists.
Resumo:
For a planetary rover to successfully traverse across unstructured terrain autonomously, one of the major challenges is to assess its local traversability such that it can plan a trajectory to achieve its mission goals efficiently while minimising risk to the vehicle itself. This paper aims to provide a comparative study on different approaches for representing the geometry of Martian terrain for the purpose of evaluating terrain traversability. An accurate representation of the geometric properties of the terrain is essential as it can directly affect the determination of traversability for a ground vehicle. We explore current state-of-the-art techniques for terrain estimation, in particular Gaussian Processes (GP) in various forms, and discuss the suitability of each technique in the context of an unstructured Martian terrain. Furthermore, we present the limitations of regression techniques in terms of spatial correlation and continuity assumptions, and the impact on traversability analysis of a planetary rover across unstructured terrain. The analysis was performed on datasets of the Mars Yard at the Powerhouse Museum in Sydney, obtained using the onboard RGB-D camera.
Resumo:
Considering the wide spectrum of situations that it may encounter, a robot navigating autonomously in outdoor environments needs to be endowed with several operating modes, for robustness and efficiency reasons. Indeed, the terrain it has to traverse may be composed of flat or rough areas, low cohesive soils such as sand dunes, concrete road etc... Traversing these various kinds of environment calls for different navigation and/or locomotion functionalities, especially if the robot is endowed with different locomotion abilities, such as the robots WorkPartner, Hylos [4], Nomad or the Marsokhod rovers.
Resumo:
Considering the wide spectrum of situations that it may encounter, a robot navigating autonomously in outdoor environments needs to be endowed with several operating modes, for robustness and efficiency reasons. Indeed, the terrain it has to traverse may be composed of flat or rough areas, low cohesive soils such as sand dunes, concrete road etc. . .Traversing these various kinds of environment calls for different navigation and/or locomotion functionalities, especially if the robot is endowed with different locomotion abilities, such as the robots WorkPartner, Hylos [4], Nomad or the Marsokhod rovers. Numerous rover navigation techniques have been proposed, each of them being suited to a particular environment context (e.g. path following, obstacle avoidance in more or less cluttered environments, rough terrain traverses...). However, seldom contributions in the literature tackle the problem of selecting autonomously the most suited mode [3]. Most of the existing work is indeed devoted to the passive analysis of a single navigation mode, as in [2]. Fault detection is of course essential: one can imagine that a proper monitoring of the Mars Exploration Rover Opportunity could have avoided the rover to be stuck during several weeks in a dune, by detecting non-nominal behavior of some parameters. But the ability to recover the anticipated problem by switching to a better suited navigation mode would bring higher autonomy abilities, and therefore a better overall efficiency. We propose here a probabilistic framework to achieve this, which fuses environment related and robot related information in order to actively control the rover operations.
Resumo:
It is well recognized that many scientifically interesting sites on Mars are located in rough terrains. Therefore, to enable safe autonomous operation of a planetary rover during exploration, the ability to accurately estimate terrain traversability is critical. In particular, this estimate needs to account for terrain deformation, which significantly affects the vehicle attitude and configuration. This paper presents an approach to estimate vehicle configuration, as a measure of traversability, in deformable terrain by learning the correlation between exteroceptive and proprioceptive information in experiments. We first perform traversability estimation with rigid terrain assumptions, then correlate the output with experienced vehicle configuration and terrain deformation using a multi-task Gaussian Process (GP) framework. Experimental validation of the proposed approach was performed on a prototype planetary rover and the vehicle attitude and configuration estimate was compared with state-of-the-art techniques. We demonstrate the ability of the approach to accurately estimate traversability with uncertainty in deformable terrain.
Resumo:
This paper describes a simple activity for plotting and characterising the light curve from an exoplanet transit event by way of differential photometry analysis. Using free digital imaging software, participants analyse a series of telescope images with the goal of calculating various exoplanet parameters, including its size, orbital radius and habitability. The activity has been designed for a high-school or undergraduate university level and introduces fundamental concepts in astrophysics and an understanding of the basis for exoplanetary science, the transit method and digital photometry.
Resumo:
Outdoor robots such as planetary rovers must be able to navigate safely and reliably in order to successfully perform missions in remote or hostile environments. Mobility prediction is critical to achieving this goal due to the inherent control uncertainty faced by robots traversing natural terrain. We propose a novel algorithm for stochastic mobility prediction based on multi-output Gaussian process regression. Our algorithm considers the correlation between heading and distance uncertainty and provides a predictive model that can easily be exploited by motion planning algorithms. We evaluate our method experimentally and report results from over 30 trials in a Mars-analogue environment that demonstrate the effectiveness of our method and illustrate the importance of mobility prediction in navigating challenging terrain.
Learned stochastic mobility prediction for planning with control uncertainty on unstructured terrain
Resumo:
Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This mobility prediction model is trained using sample executions of motion primitives on representative terrain, and predicts the future outcome of control actions on similar terrain. Using Gaussian process regression allows us to exploit its inherent measure of prediction uncertainty in planning. We integrate mobility prediction into a Markov decision process framework and use dynamic programming to construct a control policy for navigation to a goal region in a terrain map built using an on-board depth sensor. We consider both rigid terrain, consisting of uneven ground, small rocks, and non-traversable rocks, and also deformable terrain. We introduce two methods for training the mobility prediction model from either proprioceptive or exteroceptive observations, and report results from nearly 300 experimental trials using a planetary rover platform in a Mars-analogue environment. Our results validate the approach and demonstrate the value of planning under uncertainty for safe and reliable navigation.