480 resultados para Planar Formal Power Series
Resumo:
Summary form only given. Geometric simplicity, efficiency and polarization purity make slot antenna arrays ideal solutions for many radar, communications and navigation applications, especially when high power, light weight and limited scan volume are priorities. Resonant arrays of longitudinal slots have a slot spacing of one-half guide wavelength at the design frequency, so that the slots are located at the standing wave peaks. Planar arrays are implemented using a number of rectangular waveguides (branch line guides), arranged side-by-side, while waveguides main lines located behind and at right angles to the branch lines excite the radiating waveguides via centered-inclined coupling slots. Planar slotted waveguide arrays radiate broadside beams and all radiators are designed to be in phase.
Resumo:
Modern power systems have become more complex due to the growth in load demand, the installation of Flexible AC Transmission Systems (FACTS) devices and the integration of new HVDC links into existing AC grids. On the other hand, the introduction of the deregulated and unbundled power market operational mechanism, together with present changes in generation sources including connections of large renewable energy generation with intermittent feature in nature, have further increased the complexity and uncertainty for power system operation and control. System operators and engineers have to confront a series of technical challenges from the operation of currently interconnected power systems. Among the many challenges, how to evaluate the steady state and dynamic behaviors of existing interconnected power systems effectively and accurately using more powerful computational analysis models and approaches becomes one of the key issues in power engineering. The traditional computing techniques have been widely used in various fields for power system analysis with varying degrees of success. The rapid development of computational intelligence, such as neural networks, fuzzy systems and evolutionary computation, provides tools and opportunities to solve the complex technical problems in power system planning, operation and control.
Resumo:
Typical wireless power transfer systems utilize series compensation circuit which is based on magnetic coupling and resonance principles that was first developed by Tesla. However, changes in coupling caused by gap distance, alignment and orientation variations can lead to reduce power transfer efficiencies and the transferred power levels. This paper proposes impedance matched circuit to reduce frequency bifurcation effect and improve on the transferred power level, efficiency and total harmonic distortion (THD) performance of the series compensation circuit. A comprehensive mathematical analysis is performed for both series and impedance matched circuits to show the frequency bifurcation effects in terms of input impedance, variations in transferred power levels and efficiencies. Matlab/Simulink results validate the theoretical analysis and shows the circuits’ THD performance when circuits are fed with power electronic converters.
Resumo:
Available industrial energy meters offer high accuracy and reliability, but are typically expensive and low-bandwidth, making them poorly suited to multi-sensor data acquisition schemes and power quality analysis. An alternative measurement system is proposed in this paper that is highly modular, extensible and compact. To minimise cost, the device makes use of planar coreless PCB transformers to provide galvanic isolation for both power and data. Samples from multiple acquisition devices may be concentrated by a central processor before integration with existing host control systems. This paper focusses on the practical design and implementation of planar coreless PCB transformers to facilitate the module's isolated power, clock and data signal transfer. Calculations necessary to design coreless PCB transformers, and circuits designed for the transformer's practical application in the measurement module are presented. The designed transformer and each application circuit have been experimentally verified, with test data and conclusions made applicable to coreless PCB transformers in general.
Resumo:
Study/Objective This program of research examines the effectiveness of legal mechanisms as motivators to maximise engagement and compliance with evacuation messages. This study is based on the understanding that the presence of legislative requirements, as well as sanctions and incentives encapsulated in law, can have a positive impact in achieving compliance. Our objective is to examine whether the current Australian legal frameworks, which incorporate evacuation during disasters, are an effective structure that is properly understood by those who enforce and those who are required to comply. Background In Australia, most jurisdictions have enacted legislation that encapsulates the power to evacuate and the ability to enforce compliance, either by the use of force or imposition of penalty. However, citizens still choose to not evacuate. Methods This program of research incorporates theoretical and doctrinal methodologies for reviewing literature and legislation in the Australia context. The aim of the research is to determine whether further clarity is required to create an understanding of the powers to evacuate, as well as greater public awareness of these powers. Results & Conclusion Legislators suggest that powers of evacuation can be ineffective if they are impractical to enforce. In Australia, there may also be confusion about from which legislative instrument the power to evacuate derives, and therefore whether there is a corresponding ability to enforce compliance through the use of force or imposition of a penalty. Equally, communities may lack awareness and understanding of the powers of agencies to enforce compliance. We seek to investigate whether this is the case, and whether even if greater awareness existed, it would act as an incentive to comply.
Resumo:
We describe a design and fabrication method to enable simpler manufacturing of more efficient organic solar cell modules using a modified flat panel deposition technique. Many mini-cell pixels are individually connected to each other in parallel forming a macro-scale solar cell array. The pixel size of each array is optimized through experimentation to maximize the efficiency of the whole array. We demonstrate that integrated organic solar cell modules with a scalable current output can be fabricated in this fashion and can also be connected in series to generate a scalable voltage output.
Resumo:
Large sized power transformers are important parts of the power supply chain. These very critical networks of engineering assets are an essential base of a nation’s energy resource infrastructure. This research identifies the key factors influencing transformer normal operating conditions and predicts the asset management lifespan. Engineering asset research has developed few lifespan forecasting methods combining real-time monitoring solutions for transformer maintenance and replacement. Utilizing the rich data source from a remote terminal unit (RTU) system for sensor-data driven analysis, this research develops an innovative real-time lifespan forecasting approach applying logistic regression based on the Weibull distribution. The methodology and the implementation prototype are verified using a data series from 161 kV transformers to evaluate the efficiency and accuracy for energy sector applications. The asset stakeholders and suppliers significantly benefit from the real-time power transformer lifespan evaluation for maintenance and replacement decision support.
Resumo:
This paper is the second in a two-part series that maps continuities and ruptures in conceptions of power and traces their effects in educational discourse on 'the child'. It delineates two post-Newtonian intellectual trajectories through which concepts of 'power' arrived at the theorization of 'the child': the paradoxical bio-physical inscriptions of human-ness that accompanied mechanistic worldviews and the explanations for social motion in political philosophy. The intersection of pedagogical theories with 'the child' and 'power' is further traced from the latter 1800s to the present, where a Foucaultian analytics of power-as-effects is reconsidered in regard to histories of motion. The analysis culminates in an examination of post-Newtonian (dis)continuities in the theorization of power, suggesting some productive paradoxes that inhabit turn of the 21st-century conceptualizations of the social.
Resumo:
"Rereading the historical record indicates that it is no longer so easy to argue that history is simply prior to its forms. Since the mid-1990s a new wave of research has formed around wider debates in the humanities and social sciences, such as decentering the subject, new analytics of power, reconsideration of one-dimensional time and three-dimensional space, attention to beyond-archival sources, alterity, Otherness, the invisible, and more. In addition, broader and contradictory impulses around the question of the nation - transnational, post-national, proto-national, and neo-national movements – have unearthed a new series of problematics and focused scholarly attention on traveling discourses, national imaginaries, and less formal processes of socialization, bonding, and subjectification. New Curriculum History challenges prior occlusions in the field, building upon and departing from previous waves of scholarship, extending the focus beyond the insularity of public schooling, the traditional framework of the self-contained nation-state, and the psychology of the schooled individual. Drawing on global studies, historical sociology, postcolonial studies, critical race theory, visual culture theory, disability studies, psychoanalytics, Cambridge school structuralisms, poststructuralisms, and infra- and transnational approaches the volume holds together not despite but because of differences and incommensurabilities in rereading historical records. Audience: Scholars and students in curriculum studies, history, education, philosophy, and cultural studies will be interested in these chapters for their methodological range, their innovations and their deterritorializations."--publisher website
Resumo:
Behavioral profiles have been proposed as a behavioral abstraction of dynamic systems, specifically in the context of business process modeling. A behavioral profile can be seen as a complete graph over a set of task labels, where each edge is annotated with one relation from a given set of binary behavioral relations. Since their introduction, behavioral profiles were argued to provide a convenient way for comparing pairs of process models with respect to their behavior or computing behavioral similarity between process models. Still, as of today, there is little understanding of the expressive power of behavioral profiles. Via counter-examples, several authors have shown that behavioral profiles over various sets of behavioral relations cannot distinguish certain systems up to trace equivalence, even for restricted classes of systems represented as safe workflow nets. This paper studies the expressive power of behavioral profiles from two angles. Firstly, the paper investigates the expressive power of behavioral profiles and systems captured as acyclic workflow nets. It is shown that for unlabeled acyclic workflow net systems, behavioral profiles over a simple set of behavioral relations are expressive up to configuration equivalence. When systems are labeled, this result does not hold for any of several previously proposed sets of behavioral relations. Secondly, the paper compares the expressive power of behavioral profiles and regular languages. It is shown that for any set of behavioral relations, behavioral profiles are strictly less expressive than regular languages, entailing that behavioral profiles cannot be used to decide trace equivalence of finite automata and thus Petri nets.
Rainfall, Mosquito Density and the Transmission of Ross River Virus: A Time-Series Forecasting Model