63 resultados para Petroleum, Synthetic.
Resumo:
Having the ability to work with complex models can be highly beneficial, but the computational cost of doing so is often large. Complex models often have intractable likelihoods, so methods that directly use the likelihood function are infeasible. In these situations, the benefits of working with likelihood-free methods become apparent. Likelihood-free methods, such as parametric Bayesian indirect likelihood that uses the likelihood of an alternative parametric auxiliary model, have been explored throughout the literature as a good alternative when the model of interest is complex. One of these methods is called the synthetic likelihood (SL), which assumes a multivariate normal approximation to the likelihood of a summary statistic of interest. This paper explores the accuracy and computational efficiency of the Bayesian version of the synthetic likelihood (BSL) approach in comparison to a competitor known as approximate Bayesian computation (ABC) and its sensitivity to its tuning parameters and assumptions. We relate BSL to pseudo-marginal methods and propose to use an alternative SL that uses an unbiased estimator of the exact working normal likelihood when the summary statistic has a multivariate normal distribution. Several applications of varying complexity are considered to illustrate the findings of this paper.
Resumo:
In the field of workplace air quality, measuring and analyzing the size distribution of airborne particles to identify their sources and apportion their contribution has become widely accepted, however, the driving factors that influence this parameter, particularly for nanoparticles (< 100 nm), have not been thoroughly determined. Identification of driving factors, and in turn, general trends in size distribution of emitted particles would facilitate the prediction of nanoparticles’ emission behavior and significantly contribute to their exposure assessment. In this study, a comprehensive analysis of the particle number size distribution data, with a particular focus on the ultrafine size range of synthetic clay particles emitted from a jet milling machine was conducted using the multi-lognormal fitting method. The results showed relatively high contribution of nanoparticles to the emissions in many of the tested cases, and also, that both surface treatment and feed rate of the machine are significant factors influencing the size distribution of the emitted particles of this size. In particular, applying surface treatments and increasing the machine feed rate have the similar effect of reducing the size of the particles, however, no general trend was found in variations of size distribution across different surface treatments and feed rates. The findings of our study demonstrate that for this process and other activities, where no general trend is found in the size distribution of the emitted airborne particles due to dissimilar effects of the driving factors, each case must be treated separately in terms of workplace exposure assessment and regulations.
Resumo:
The c-Fos–c-Jun complex forms the activator protein 1 transcription factor, a therapeutic target in the treatment of cancer. Various synthetic peptides have been designed to try to selectively disrupt the interaction between c-Fos and c-Jun at its leucine zipper domain. To evaluate the binding affinity between these synthetic peptides and c-Fos, polarizable and nonpolarizable molecular dynamics (MD) simulations were conducted, and the resulting conformations were analyzed using the molecular mechanics generalized Born surface area (MM/GBSA) method to compute free energies of binding. In contrast to empirical and semiempirical approaches, the estimation of free energies of binding using a combination of MD simulations and the MM/GBSA approach takes into account dynamical properties such as conformational changes, as well as solvation effects and hydrophobic and hydrophilic interactions. The predicted binding affinities of the series of c-Jun-based peptides targeting the c-Fos peptide show good correlation with experimental melting temperatures. This provides the basis for the rational design of peptides based on internal, van der Waals, and electrostatic interactions.