231 resultados para Particle number distribution


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A 4-cylinder Ford 2701C test engine was used in this study to explore the impact of ethanol fumigation on gaseous and particle emission concentrations. The fumigation technique delivered vaporised ethanol into the intake manifold of the engine, using an injector, a pump and pressure regulator, a heat exchanger for vaporising ethanol and a separate fuel tank and lines. Gaseous (Nitric oxide (NO), Carbon monoxide (CO) and hydrocarbons (HC)) and particulate emissions (particle mass (PM2.5) and particle number) testing was conducted at intermediate speed (1700 rpm) using 4 load settings with ethanol substitution percentages ranging from 10-40 % (by energy). With ethanol fumigation, NO and PM2.5 emissions were reduced, whereas CO and HC emissions increased considerably and particle number emissions increased at most test settings. It was found that ethanol fumigation reduced the excess air factor for the engine and this led to increased emissions of CO and HC, but decreased emissions of NO. PM2.5 emissions were reduced with ethanol fumigation, as ethanol has a very low “sooting” tendency. This is due to the higher hydrogen-to-carbon ratio of this fuel, and also because ethanol does not contain aromatics, both of which are known soot precursors. The use of a diesel oxidation catalyst (as an after-treatment device) is recommended to achieve a reduction in the four pollutants that are currently regulated for compression ignition engines. The increase in particle number emissions with ethanol fumigation was due to the formation of volatile (organic) particles; consequently, using a diesel oxidation catalyst will also assist in reducing particle number emissions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alternative fuels and injection technologies are a necessary component of particulate emission reduction strategies for compression ignition engines. Consequently, this study undertakes a physicochemical characterization of diesel particulate matter (DPM) for engines equipped with alternative injection technologies (direct injection and common rail) and alternative fuels (ultra low sulfur diesel, a 20% biodiesel blend, and a synthetic diesel). Particle physical properties were addressed by measuring particle number size distributions, and particle chemical properties were addressed by measuring polycyclic aromatic hydrocarbons (PAHs) and reactive oxygen species (ROS). Particle volatility was determined by passing the polydisperse size distribution through a thermodenuder set to 300 °C. The results from this study, conducted over a four point test cycle, showed that both fuel type and injection technology have an impact on particle emissions, but injection technology was the more important factor. Significant particle number emission (54%–84%) reductions were achieved at half load operation (1% increase–43% decrease at full load) with the common rail injection system; however, the particles had a significantly higher PAH fraction (by a factor of 2 to 4) and ROS concentrations (by a factor of 6 to 16) both expressed on a test-cycle averaged basis. The results of this study have significant implications for the health effects of DPM emissions from both direct injection and common rail engines utilizing various alternative fuels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Exposure to ultrafine particles (diameter less than 100 nm) is an important topic in epidemiological and toxicological studies. This study used the average particle number size distribution data obtained from our measurement survey in major micro-environments, together with the people activity pattern data obtained from the Italian Human Activity Pattern Survey to estimate the tracheobronchial and alveolar dose of submicrometer particles for different population age groups in Italy. We developed a numerical methodology based on Monte Carlo method, in order to estimate the best combination from a probabilistic point of view. More than 106 different cases were analyzed according to a purpose built sub-routine and our results showed that the daily alveolar particle number and surface area deposited for all of the age groups considered was equal to 1.5 x 1011 particles and 2.5 x 1015 m2, respectively, varying slightly for males and females living in Northern or Southern Italy. In terms of tracheobronchial deposition, the corresponding values for daily particle number and surface area for all age groups was equal to 6.5 x 1010 particles and 9.9 x 1014 m2, respectively. Overall, the highest contributions were found to come from indoor cooking (female), working time (male) and transportation (i.e. traffic derived particles) (children).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alveolar and tracheobronchial-deposited submicrometer particle number and surface area data received by different age groups in Australia are shown. Activity patterns were combined with microenvironmental data through a Monte-Carlo method. Particle number distributions for the most significant microenvironments were obtained from our measurement survey data and people activity pattern data from the Australian Human Activity Pattern Survey were used. Daily alveolar particle number (surface area) dose received by all age groups was equal to 3.0×1010 particles (4.5×102 mm2), varying slightly between males and females. In contrast to gender, the lifestyle was found to significantly affect the daily dose, with highest depositions characterizing adults. The main contribution was due to indoor microenvironments. Finally a comparison between Italian and Australian people in terms of received particle dose was reported; it shows that different cooking styles can affect dose levels: higher doses were received by Italians, mainly due to their particular cooking activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: To investigate the significance of sources around measurement sites, assist the development of control strategies for the important sources and mitigate the adverse effects of air pollution due to particle size. Methods: In this study, sampling was conducted at two sites located in urban/industrial and residential areas situated at roadsides along the Brisbane Urban Corridor. Ultrafine and fine particle measurements obtained at the two sites in June-July 2002 were analysed by Positive Matrix Factorization (PMF). Results: Six sources were present, including local traffic, two traffic sources, biomass burning, and two currently unidentified sources. Secondary particles had a significant impact at Site 1, while nitrates, peak traffic hours and main roads located close to the source also affected the results for both sites. Conclusions: This significant traffic corridor exemplifies the type of sources present in heavily trafficked locations and future attempts to control pollution in this type of environment could focus on the sources that were identified.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The overall aim of this project was to contribute to existing knowledge regarding methods for measuring characteristics of airborne nanoparticles and controlling occupational exposure to airborne nanoparticles, and to gather data on nanoparticle emission and transport in various workplaces. The scope of this study involved investigating the characteristics and behaviour of particles arising from the operation of six nanotechnology processes, subdivided into nine processes for measurement purposes. It did not include the toxicological evaluation of the aerosol and therefore, no direct conclusion was made regarding the health effects of exposure to these particles. Our research included real-time measurement of sub, and supermicrometre particle number and mass concentration, count median diameter, and alveolar deposited surface area using condensation particle counters, an optical particle counter, DustTrak photometer, scanning mobility particle sizer, and nanoparticle surface area monitor, respectively. Off-line particle analysis included scanning and transmission electron microscopy, energy-dispersive x-ray spectrometry, and thermal optical analysis of elemental carbon. Sources of fibrous and non-fibrous particles were included.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The focus of this paper is on the measured particle number concentrations (PNC) as well as elemental and organic carbon in 17 primary schools. This study is part of the “Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH)”, which aims to determine the relationship between exposure to traffic related ultrafine (UF) particles and children’s health (http://www.ilaqh.qut.edu.au/Misc/UPTECH%20Home.htm). To achieve this, air quality and health data are being collected at 25 schools within Brisbane Metropolitan Area in Australia over two years. This paper presents the general aspects of UF particles data and preliminary results from the first 17 schools (S01 to S17), tested from Oct 2010 to Dec 2011.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

New particle formation (NPF) and growth have been observed in different environments all around the world and NPF affects the environment by forming cloud condensation nuclei (CCN). Detailed characterisation of NPF events in a subtropical urban environment is the main aim of this study. Particle size distribution (PSD) of atmospheric aerosol particles in range 9-414 nm were measured using a Scanning Mobility Particle Sizer (SMPS), within the framework of the “Ultrafine Particles from Traffic Emissions and Children’s Health” (UPTECH) study, which seeks to determine the relationship between exposure to traffic related ultrafine particles and children’s health (http://www.ilaqh.qut. edu.au/Misc/UPTECH%20Home.htm). The UPTECH study includes measurements of air quality, meteorological and traffic parameters in 25 randomly selected state primary school within the Brisbane metropolitan area, in Queensland, Australia. Measurements at 17 schools have been completed so far.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Whilst the compression ignition (CI) engine exhibits many design advantages relative to its spark ignition engine counterpart; such as: high thermal efficiency, fuel economy and low carbon monoxide and hydrocarbon emissions, the issue of Diesel Particulate Matter (DPM) emissions continues to be an unresolved problem for the CI engine. Primarily, this thesis investigates a range of DPM mitigation strategies such as alternative fuels, injection technologies and combustion strategies conducted with a view to determine their impact on the physico-chemical properties of DPM emissions, and consequently to shed light on their likely human health impacts. Regulated gaseous emissions, Nitric oxide (NO), Carbon monoxide (CO), and Hydrocarbons (HCs), were measured in all experimental campaigns, although the major focus in this research program was on particulate emissions...

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many Brisbane houses were affected by water inundation as a result of the flooding event which occurred in January 2011. The combination of waterlogged materials and large amounts of silt and organic debris in affected homes gave rise to a situation where exposures to airborne particles could potentially be elevated. However, swift action to remove wet materials and dry out the building structures can help to reduce moisture and humidity in flooded houses, in an effort to prevent the growth of bacteria and mould and improve indoor air quality in and around flooded areas. To test this hypothesis, field measurements were carried out during 21 March and 3 May, 2011.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epidemiological research has consistently shown an association between fine and ultrafine particle concentrations, and increases in both respiratory and cardiovascular morbidity and mortality. These particles, often found in vehicle emissions outside buildings, can penetrate inside via their envelopes and mechanically ventilated systems. Indoor activities such as printing, cooking and cleaning, as well as the movement of building occupants are also an additional source of these particles. In this context, the filtration systems of mechanically ventilated buildings can reduce indoor particle concentrations. Several studies have quantified the efficiency of dry-media and electrostatic filters, but they mainly focused on the particle size range > 300 nm. Some others studied ultrafine particles but their investigations were conducted in laboratories. At this point, there is still only limited information on in situ filter efficiency and an incomplete understanding of filtration influence on I/O ratios of particle concentrations. To help address these gaps in knowledge and provide new information for the selection of appropriate filter types in office building HVAC systems, we aimed to: (1) measure particle concentrations at up and down stream flows of filter devices, as well as outdoor and indoor office buildings; (2) quantify efficiency of different filter types at different buildings; and (3) assess the impact of these filters on I/O ratios at different indoor and outdoor source operation scenarios.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Frequent exposure to ultrafine particles (UFP) is associated with detrimental effects on cardiopulmonary function and health. UFP dose and therefore the associated health risk are a factor of exposure frequency, duration, and magnitude of (therefore also proximity to) a UFP emission source. Bicycle commuters using on-road routes during peak traffic times are sharing a microenvironment with high levels of motorised traffic, a major UFP emission source. Inhaled particle counts were measured along popular pre-identified bicycle commute route alterations of low (LOW) and high (HIGH) motorised traffic to the same inner-city destination at peak commute traffic times. During commute, real-time particle number concentration (PNC; mostly in the UFP range) and particle diameter (PD), heart and respiratory rate, geographical location, and meteorological variables were measured. To determine inhaled particle counts, ventilation rate was calculated from heart-rate-ventilation associations, produced from periodic exercise testing. Total mean PNC of LOW (compared to HIGH) was reduced (1.56 x e4 ± 0.38 x e4 versus 3.06 x e4 ± 0.53 x e4 ppcc; p = 0.012). Total estimated ventilation rate did not vary significantly between LOW and HIGH (43 ± 5 versus 46 ± 9 L•min; p = 0.136); however, due to total mean PNC, accumulated inhaled particle counts were 48% lower in LOW, compared to HIGH (7.6 x e8 ± 1.5 x e8 versus 14.6 x e8 ± 1.8 x e8; p = 0.003). For bicycle commuting at peak morning commute times, inhaled particle counts and therefore cardiopulmonary health risk may be substantially reduced by decreasing exposure to motorised traffic, which should be considered by both bicycle commuters and urban planners.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Over the past two decades, flat-plate particle collections have revealed the presence of a remarkable variety of both terrestrial and extraterrestrial material in the stratosphere [1-6]. The ratio of terrestrial to extraterrestrial material and the nature of material collected may vary over observable time scales. Variations in particle number density can be important since the earth’s atmospheric radiation balance, and therefore the earth’s climate, can be influenced by articulate absorption and scattering of radiation from the sun and earth [7-9]. In order to assess the number density of solid particles in the stratosphere, we have examined a representative fraction of the so1id particles from two flat-plate collection surfaces, whose collection dates are separated in time by 5 years.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Particulate matter is common in our environment and has been linked to human health problems particularly in the ultrafine size range. A range of chemical species have been associated with particulate matter and of special concern are the hazardous chemicals that can accentuate health problems. If the sources of such particles can be identified then strategies can be developed for the reduction of air pollution and consequently, the improvement of the quality of life. In this investigation, particle number size distribution data and the concentrations of chemical species were obtained at two sites in Brisbane, Australia. Source apportionment was used to determine the sources (or factors) responsible for the particle size distribution data. The apportionment was performed by Positive Matrix Factorisation (PMF) and Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS), and the results were compared with information from the gaseous chemical composition analysis. Although PCA/APCS resolved more sources, the results of the PMF analysis appear to be more reliable. Six common sources identified by both methods include: traffic 1, traffic 2, local traffic, biomass burning, and two unassigned factors. Thus motor vehicle related activities had the most impact on the data with the average contribution from nearly all sources to the measured concentrations higher during peak traffic hours and weekdays. Further analyses incorporated the meteorological measurements into the PMF results to determine the direction of the sources relative to the measurement sites, and this indicated that traffic on the nearby road and intersection was responsible for most of the factors. The described methodology which utilised a combination of three types of data related to particulate matter to determine the sources could assist future development of particle emission control and reduction strategies.