151 resultados para Partial least squares
Aligning off-balance sheet risk, on-balance sheet risk and audit fees: a PLS path modelling analysis
Resumo:
This study focuses on using the partial least squares (PLS) path modelling methodology in archival auditing research by replicating the data and research questions from prior bank audit fee studies. PLS path modelling allows for inter-correlations among audit fee determinants by establishing latent constructs and multiple relationship paths in one simultaneous PLS path model. Endogeneity concerns about auditor choice can also be addressed with PLS path modelling. With a sample of US bank holding companies for the period 2003-2009, we examine the associations among on-balance sheet financial risks, off-balance sheet risks and audit fees, and also address the pervasive client size effect, and the effect of the self-selection of auditors. The results endorse the dominating effect of size on audit fees, both directly and indirectly via its impacts on other audit fee determinants. By simultaneously considering the self-selection of auditors, we still find audit fee premiums on Big N auditors, which is the second important factor on audit fee determination. On-balance-sheet financial risk measures in terms of capital adequacy, loan composition, earnings and asset quality performance have positive impacts on audit fees. After allowing for the positive influence of on-balance sheet financial risks and entity size on off-balance sheet risk, the off-balance sheet risk measure, SECRISK, is still positively associated with bank audit fees, both before and after the onset of the financial crisis. The consistent results from this study compared with prior literature provide supporting evidence and enhance confidence on the application of this new research technique in archival accounting studies.
Resumo:
Healthcare organizations in all OECD countries have continued to undergo change. These changes have been found to have a negative effect on work engagement of nursing staff. While the extent to which nursing staff dealt with these changes has been documented in the literature, little is known of how they utilized their personal resources to deal with the consequences of these changes. This study will address this gap by integrating the Job Demands-Resources theoretical perspective with Positive Psychology, in particular, psychological capital (PsyCap). PsyCap is operationalized as a source of personal resources. Data were collected from 401 nurses from Australia and analyses were undertaken using Partial Least Squares modelling and moderation analysis. Two types of changes on the nursing work were identified. There was an increase in changes to the work environment of nursing. These changes, included increasing administrative workload and the amount of work, resulted in more job demands and job resources. On the other hand, another type of changes relate to reduction to training and management support, which resulted in less job demands. Nurses with more job demands utilized more job resources to address these increasing demands. We found PsyCap to be a crucial source of personal resources that has a moderating effect on the negative effects of job demands and role stress. PsyCap and job resources were both critical in enhancing the work engagement of nurses, as they encountered changes to nursing work. These findings provided empirical support for a positive psychological perspective of understanding nursing engagement.
Resumo:
Diagnosis of articular cartilage pathology in the early disease stages using current clinical diagnostic imaging modalities is challenging, particularly because there is often no visible change in the tissue surface and matrix content, such as proteoglycans (PG). In this study, we propose the use of near infrared (NIR) spectroscopy to spatially map PG content in articular cartilage. The relationship between NIR spectra and reference data (PG content) obtained from histology of normal and artificially induced PG-depleted cartilage samples was investigated using principal component (PC) and partial least squares (PLS) regression analyses. Significant correlation was obtained between both data (R2 = 91.40%, p<0.0001). The resulting correlation was used to predict PG content from spectra acquired from whole joint sample, this was then employed to spatially map this component of cartilage across the intact sample. We conclude that NIR spectroscopy is a feasible tool for evaluating cartilage contents and mapping their distribution across mammalian joint
Resumo:
Phenols are well known noxious compounds, which are often found in various water sources. A novel analytical method has been researched and developed based on the properties of hemin–graphene hybrid nanosheets (H–GNs). These nanosheets were synthesized using a wet-chemical method, and they have peroxidase-like activity. Also, in the presence of H2O2, the nanosheets are efficient catalysts for the oxidation of the substrate, 4-aminoantipine (4-AP), and the phenols. The products of such an oxidation reaction are the colored quinone-imines (benzodiazepines). Importantly, these products enabled the differentiation of the three common phenols – pyrocatechol, resorcin and hydroquinone, with the use of a novel, spectroscopic method, which was developed for the simultaneous determination of the above three analytes. This spectroscopic method produced linear calibrations for the pyrocatechol (0.4–4.0 mg L−1), resorcin (0.2–2.0 mg L−1) and hydroquinone (0.8–8.0 mg L−1) analytes. In addition, kinetic and spectral data, obtained from the formation of the colored benzodiazepines, were used to establish multi-variate calibrations for the prediction of the three phenol analytes found in various kinds of water; partial least squares (PLS), principal component regression (PCR) and artificial neural network (ANN) models were used and the PLS model performed best.
Resumo:
Purpose The purpose of this paper is to explore the role of marketing in today's enterprises and examines the antecedents of the marketing department's influence and its relationship with market orientation and firm performance. Design/methodology/approach Data were collected from the West (i.e. the USA and Europe) and the East (i.e. Asia). Partial least squares (PLS) was used to estimate structural models. Findings The findings support the idea that a strong and influential marketing department contributes positively to firm performance. This finding holds for Western and Asian, and for small/medium and large firms alike. Second, the marketing department's influence in a firm depends more on its responsibilities and resources, and less on internal contingency factors (i.e. a firm's competitive strategy or institutional attributes). Third, a marketing department's influence in the West affects firm performance both directly and indirectly (via market orientation). In contrast, this relationship is fully mediated among Eastern firms. Fourth, low-cost strategies enhance the influence of a firm's marketing department in the East, but not in the West. Research limitations/implications The paper assumes explicitly that a marketing department's influence is an antecedent of its market orientation. While the paper finds support for this link, the paper did not test for dual causality between the constructs. Originality/value Countering the frequent claim in anecdotal and journalistic work that the role of the marketing department diminishes, the findings show that across different geographic regions and firm sizes, strong marketing departments improve firm performance (especially in the marketing-savvy West), and that they should continue to play an important role in firms.
Resumo:
Purpose – While many studies have predominantly looked at the benefits and risks of cloud computing, little is known whether and to what extent institutional forces play a role in cloud computing adoption. The purpose of this paper is to explore the role of institutional factors in top management team’s (TMT’s) decision to adopt cloud computing services. Design/methodology/approach – A model is developed and tested with data from an Australian survey using the partial least squares modeling technique. Findings – The results suggest that mimetic and coercive pressures influence TMT’s beliefs in the benefits of cloud computing. The results also show that TMT’s beliefs drive TMT’s participation, which in turn affects the intention to increase the adoption of cloud computing solutions. Research limitations/implications – Future studies could incorporate the influences of local actors who might also press for innovation. Practical implications – Given the influence of institutional forces and the plethora of cloud-based solutions on the market, it is recommended that TMTs exercise a high degree of caution when deciding for the types of applications to be outsourced as organizational requirements in terms of performance and security will differ. Originality/value – The paper contributes to the growing empirical literature on cloud computing adoption and offers the institutional framework as an alternative lens with which to interpret cloud-based information technology outsourcing.
Resumo:
A novel differential pulse voltammetry (DPV) method was developed for the simultaneous analysis of herbicides in water. A mixture of four herbicides, atrazine, simazine, propazine and terbuthylazine was analyzed simultaneously and the complex, overlapping DPV voltammograms were resolved by several chemometrics methods such as partial least squares (PLS), principal component regression (PCR) and principal component–artificial networks (PC–ANN). The complex profiles of the voltammograms collected from a synthetic set of samples were best resolved with the use of the PC–ANN method, and the best predictions of the concentrations of the analytes were obtained with the PC-ANN model (%RPET = 6.1 and average %Recovery = 99.0). The new method was also used for analysis of real samples, and the obtained results were compared well with those from the GC-MS technique. Such conclusions suggest that the novel method is a viable alternative to the other commonly used methods such as GC, HPLC and GC-MS.
Resumo:
Flos Chrysanthemum is a generic name for a particular group of edible plants, which also have medicinal properties. There are, in fact, twenty to thirty different cultivars, which are commonly used in beverages and for medicinal purposes. In this work, four Flos Chrysanthemum cultivars, Hangju, Taiju, Gongju, and Boju, were collected and chromatographic fingerprints were used to distinguish and assess these cultivars for quality control purposes. Chromatography fingerprints contain chemical information but also often have baseline drifts and peak shifts, which complicate data processing, and adaptive iteratively reweighted, penalized least squares, and correlation optimized warping were applied to correct the fingerprint peaks. The adjusted data were submitted to unsupervised and supervised pattern recognition methods. Principal component analysis was used to qualitatively differentiate the Flos Chrysanthemum cultivars. Partial least squares, continuum power regression, and K-nearest neighbors were used to predict the unknown samples. Finally, the elliptic joint confidence region method was used to evaluate the prediction ability of these models. The partial least squares and continuum power regression methods were shown to best represent the experimental results.
Resumo:
A novel near-infrared spectroscopy (NIRS) method has been researched and developed for the simultaneous analyses of the chemical components and associated properties of mint (Mentha haplocalyx Briq.) tea samples. The common analytes were: total polysaccharide content, total flavonoid content, total phenolic content, and total antioxidant activity. To resolve the NIRS data matrix for such analyses, least squares support vector machines was found to be the best chemometrics method for prediction, although it was closely followed by the radial basis function/partial least squares model. Interestingly, the commonly used partial least squares was unsatisfactory in this case. Additionally, principal component analysis and hierarchical cluster analysis were able to distinguish the mint samples according to their four geographical provinces of origin, and this was further facilitated with the use of the chemometrics classification methods-K-nearest neighbors, linear discriminant analysis, and partial least squares discriminant analysis. In general, given the potential savings with sampling and analysis time as well as with the costs of special analytical reagents required for the standard individual methods, NIRS offered a very attractive alternative for the simultaneous analysis of mint samples.
Resumo:
This paper reports on a study of the key determinants of public trust in charitable organisations, using survey data commissioned by the Australian Charities and Not-for-profits Commission. Data analysis used partial least squares structural equation modelling to examine both antecedents of trust and the influence of trust on charitable donative intentions. We found that people tend to trust charities with which they are familiar, and which are transparent in their reporting. Organisational size, importance, reputation and national significant were also antecedents of trust. People are more likely to volunteer or donate to charities they trust. The practical implications of this are that charities seeking to enhance their volunteer and donation base should pay attention to their marketing, reputation and disclosure activities, as well as to doing good work on an ongoing basis in the community. Theoretically, the implications are that transparency and reputation do not result directly in donations and volunteering, but they do create trust, and it is trust which then leads to donations and volunteering.
Resumo:
- Purpose This paper aims to investigate how direct mail consumption contributes to brand relationship quality. Store flyers and other direct mailings continue to play a significant role in many companies’ communication strategies. Research on this topic predominantly investigates driving store traffic and sales. Less is known regarding the consumer side, such as the value that consumers may derive from the consumption of direct mailings and the effects of such a value on brand relationship quality. To address this limitation, this paper tests a causal model of the contribution of direct mail value to brand commitment, drawing on a value framework that integrates social theory of engagement regimes and literature on experiential customer value. - Design/methodology/approach The empirical work of this paper is based on a rigorous four-study mixed methods design, involving qualitative study, confirmatory factor analysis and partial least squares structural modeling. - Findings The authors develop two second-order formatively designed scales – familiar value and planned value scales – that illustrate the role of engagement regimes in consumer behavior. Although both types of value contribute equally to direct mail attachment, they exert contrasting effects on other mediational consumer responses, such as reading and gratitude. Finally, the proposed theoretical model appears to be robust in predicting customers’ brand commitment. - Research limitations/implications This study provides new insights into the research on consumer value and brand relational communication. - Originality/value This study is the first to consider consumer benefits from the social perspective of engagement regimes.
Resumo:
Reliable ambiguity resolution (AR) is essential to Real-Time Kinematic (RTK) positioning and its applications, since incorrect ambiguity fixing can lead to largely biased positioning solutions. A partial ambiguity fixing technique is developed to improve the reliability of AR, involving partial ambiguity decorrelation (PAD) and partial ambiguity resolution (PAR). Decorrelation transformation could substantially amplify the biases in the phase measurements. The purpose of PAD is to find the optimum trade-off between decorrelation and worst-case bias amplification. The concept of PAR refers to the case where only a subset of the ambiguities can be fixed correctly to their integers in the integer least-squares (ILS) estimation system at high success rates. As a result, RTK solutions can be derived from these integer-fixed phase measurements. This is meaningful provided that the number of reliably resolved phase measurements is sufficiently large for least-square estimation of RTK solutions as well. Considering the GPS constellation alone, partially fixed measurements are often insufficient for positioning. The AR reliability is usually characterised by the AR success rate. In this contribution an AR validation decision matrix is firstly introduced to understand the impact of success rate. Moreover the AR risk probability is included into a more complete evaluation of the AR reliability. We use 16 ambiguity variance-covariance matrices with different levels of success rate to analyse the relation between success rate and AR risk probability. Next, the paper examines during the PAD process, how a bias in one measurement is propagated and amplified onto many others, leading to more than one wrong integer and to affect the success probability. Furthermore, the paper proposes a partial ambiguity fixing procedure with a predefined success rate criterion and ratio-test in the ambiguity validation process. In this paper, the Galileo constellation data is tested with simulated observations. Numerical results from our experiment clearly demonstrate that only when the computed success rate is very high, the AR validation can provide decisions about the correctness of AR which are close to real world, with both low AR risk and false alarm probabilities. The results also indicate that the PAR procedure can automatically chose adequate number of ambiguities to fix at given high-success rate from the multiple constellations instead of fixing all the ambiguities. This is a benefit that multiple GNSS constellations can offer.
Resumo:
Advances in symptom management strategies through a better understanding of cancer symptom clusters depend on the identification of symptom clusters that are valid and reliable. The purpose of this exploratory research was to investigate alternative analytical approaches to identify symptom clusters for patients with cancer, using readily accessible statistical methods, and to justify which methods of identification may be appropriate for this context. Three studies were undertaken: (1) a systematic review of the literature, to identify analytical methods commonly used for symptom cluster identification for cancer patients; (2) a secondary data analysis to identify symptom clusters and compare alternative methods, as a guide to best practice approaches in cross-sectional studies; and (3) a secondary data analysis to investigate the stability of symptom clusters over time. The systematic literature review identified, in 10 years prior to March 2007, 13 cross-sectional studies implementing multivariate methods to identify cancer related symptom clusters. The methods commonly used to group symptoms were exploratory factor analysis, hierarchical cluster analysis and principal components analysis. Common factor analysis methods were recommended as the best practice cross-sectional methods for cancer symptom cluster identification. A comparison of alternative common factor analysis methods was conducted, in a secondary analysis of a sample of 219 ambulatory cancer patients with mixed diagnoses, assessed within one month of commencing chemotherapy treatment. Principal axis factoring, unweighted least squares and image factor analysis identified five consistent symptom clusters, based on patient self-reported distress ratings of 42 physical symptoms. Extraction of an additional cluster was necessary when using alpha factor analysis to determine clinically relevant symptom clusters. The recommended approaches for symptom cluster identification using nonmultivariate normal data were: principal axis factoring or unweighted least squares for factor extraction, followed by oblique rotation; and use of the scree plot and Minimum Average Partial procedure to determine the number of factors. In contrast to other studies which typically interpret pattern coefficients alone, in these studies symptom clusters were determined on the basis of structure coefficients. This approach was adopted for the stability of the results as structure coefficients are correlations between factors and symptoms unaffected by the correlations between factors. Symptoms could be associated with multiple clusters as a foundation for investigating potential interventions. The stability of these five symptom clusters was investigated in separate common factor analyses, 6 and 12 months after chemotherapy commenced. Five qualitatively consistent symptom clusters were identified over time (Musculoskeletal-discomforts/lethargy, Oral-discomforts, Gastrointestinaldiscomforts, Vasomotor-symptoms, Gastrointestinal-toxicities), but at 12 months two additional clusters were determined (Lethargy and Gastrointestinal/digestive symptoms). Future studies should include physical, psychological, and cognitive symptoms. Further investigation of the identified symptom clusters is required for validation, to examine causality, and potentially to suggest interventions for symptom management. Future studies should use longitudinal analyses to investigate change in symptom clusters, the influence of patient related factors, and the impact on outcomes (e.g., daily functioning) over time.
Resumo:
Recently, many new applications in engineering and science are governed by a series of fractional partial differential equations (FPDEs). Unlike the normal partial differential equations (PDEs), the differential order in a FPDE is with a fractional order, which will lead to new challenges for numerical simulation, because most existing numerical simulation techniques are developed for the PDE with an integer differential order. The current dominant numerical method for FPDEs is Finite Difference Method (FDM), which is usually difficult to handle a complex problem domain, and also hard to use irregular nodal distribution. This paper aims to develop an implicit meshless approach based on the moving least squares (MLS) approximation for numerical simulation of fractional advection-diffusion equations (FADE), which is a typical FPDE. The discrete system of equations is obtained by using the MLS meshless shape functions and the meshless strong-forms. The stability and convergence related to the time discretization of this approach are then discussed and theoretically proven. Several numerical examples with different problem domains and different nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of the FADE.