68 resultados para PT(100)
A Deweyan experience economy for higher education : The case of the Australian Indie 100 Music Event
Resumo:
In this essay we argue that a Deweyan experience economy will best support the higher education (HE) sector in the future, and we draw a contrast between that economy and the sector’s current focus on informational concerns, as expressed by the recent rush to Massive Open Online Courses (MOOCs) and other mass online informational offerings. We base our argument on current developments in music education and music technology that we see as being preemptive of wider trends. We use examples from a three-year study of online and offline music pedagogies and outline a four-year experiment in developing a pedagogical experience economy to illustrate a theoretical position informed by John Dewey’s theory of experience,Pierre Bourdieu’s theory of habitus and capital, and recent work in economic geography on epistemic communities. We argue further that the future of the HE sector is local rather than global, experiential rather than informational, and that therefore a continued informational approach to the future of HE risks undermining the sector.
Resumo:
Studies of cerebral asymmetry can open doors to understanding the functional specialization of each brain hemisphere, and how this is altered in disease. Here we examined hemispheric asymmetries in fiber architecture using diffusion tensor imaging (DTI) in 100 subjects, using high-dimensional fluid warping to disentangle shape differences from measures sensitive to myelination. Confounding effects of purely structural asymmetries were reduced by using co-registered structural images to fluidly warp 3D maps of fiber characteristics (fractional and geodesic anisotropy) to a structurally symmetric minimal deformation template (MDT). We performed a quantitative genetic analysis on 100 subjects to determine whether the sources of the remaining signal asymmetries were primarily genetic or environmental. A twin design was used to identify the heritable features of fiber asymmetry in various regions of interest, to further assist in the discovery of genes influencing brain micro-architecture and brain lateralization. Genetic influences and left/right asymmetries were detected in the fiber architecture of the frontal lobes, with minor differences depending on the choice of registration template.
Resumo:
Information from the full diffusion tensor (DT) was used to compute voxel-wise genetic contributions to brain fiber microstructure. First, we designed a new multivariate intraclass correlation formula in the log-Euclidean framework. We then analyzed used the full multivariate structure of the tensor in a multivariate version of a voxel-wise maximum-likelihood structural equation model (SEM) that computes the variance contributions in the DTs from genetic (A), common environmental (C) and unique environmental (E) factors. Our algorithm was tested on DT images from 25 identical and 25 fraternal twin pairs. After linear and fluid registration to a mean template, we computed the intraclass correlation and Falconer's heritability statistic for several scalar DT-derived measures and for the full multivariate tensors. Covariance matrices were found from the DTs, and inputted into SEM. Analyzing the full DT enhanced the detection of A and C effects. This approach should empower imaging genetics studies that use DTI.
Resumo:
Here we demonstrate that commercial carbon supported Pt nanoparticles react with [AuCl4]- ions at room temperature to produce a highly active Au/Pt/C material with an ultralow coverage of elemental Au on the Pt nanoparticles that exhibits significantly enhanced activity for ethanol oxidation when compared to Pt/C.
Resumo:
The authors combine nanostenciling and pulsed laser deposition to patterngermanium(Ge)nanostructures into desired architectures. They have analyzed the evolution of the Ge morphology with coverage. Following the formation of a wetting layer within each area defined by the stencil’s apertures, Gegrowth becomes three dimensional and the size and number of Ge nanocrystals evolve with coverage. Micro-Raman spectroscopy shows that the deposits are crystalline and epitaxial. This approach is promising for the parallel patterning of semiconductor nanostructures for optoelectronic applications.
Resumo:
This paper begins with the assertion that research grounded in creative practice constitutes a new paradigm. We argue both for and against the idea. We argue against the idea in terms of applying it to the idealised ‘lone artist’ engaged in the production of their art, whose focus of research is a self-reflection upon the art they produce, and whose art is also the findings of the research. Our position is that such an approach cannot be considered as anything other than a form of auto-phenomenography, that such efforts are part of qualitative research, and they are thus trivial in paradigmatic terms. However, we argue in the positive for understanding the artistic event – by which we mean any mass ecology of artistic practice – as being paradigmatically new in terms of research potentials and demands. Our exemplar for that argument is a practice-led, large-scale annual event called Indie 100 which has run for five years and has demonstrated a distinct paradigmatic ‘settling in’ over its duration while clearly pushing paradigmatic boundaries for research into creative practice.
Resumo:
Volatility-hygroscopicity tandem differential mobility analyzer measurements were used to infer the composition of sub-100 nm diameter Southern Ocean marine aerosols at Cape Grim in November and December 2007. This study focuses on a short-lived high sea spray aerosol (SSA) event on 7–8 December with two externally mixed modes in the Hygroscopic Growth Factor (HGF) distributions (90% relative humidity (RH)), one at HGF > 2 and another at HGF~1.5. The particles with HGF > 2 displayed a deliquescent transition at 73–75% RH and were nonvolatile up to 280°C, which identified them as SSA particles with a large inorganic sea-salt fraction. SSA HGFs were 3–13% below those for pure sea-salt particles, indicating an organic volume fraction (OVF) of up to 11–46%. Observed high inorganic fractions in sub-100 nm SSA is contrary to similar, earlier studies. HGFs increased with decreasing particle diameter over the range 16–97 nm, suggesting a decreased OVF, again contrary to earlier studies. SSA comprised up to 69% of the sub-100 nm particle number, corresponding to concentrations of 110–290 cm−3. Air mass back trajectories indicate that SSA particles were produced 1500 km, 20–40 h upwind of Cape Grim. Transmission electron microscopy (TEM) and X-ray spectrometry measurements of sub-100 nm aerosols collected from the same location, and at the same time, displayed a distinct lack of sea salt. Results herein highlight the potential for biases in TEM analysis of the chemical composition of marine aerosols.
Resumo:
Reducing carbon dioxide (CO2) to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single palladium/platinum (Pd/Pt) atoms supported on graphitic carbon nitride (g-C3N4), i.e. Pd/g-C3N4 and Pt/g-C3N4, acting as photocatalysts for CO2 reduction were investigated by density function theory (DFT) calcu-lations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, depositing atom catalysts on g-C3N4 significantly enhances the visible light absorption, rendering them ideal for visible light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply.