88 resultados para POLITICA DE FUSION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fusion techniques can be used in biometrics to achieve higher accuracy. When biometric systems are in operation and the threat level changes, controlling the trade-off between detection error rates can reduce the impact of an attack. In a fused system, varying a single threshold does not allow this to be achieved, but systematic adjustment of a set of parameters does. In this paper, fused decisions from a multi-part, multi-sample sequential architecture are investigated for that purpose in an iris recognition system. A specific implementation of the multi-part architecture is proposed and the effect of the number of parts and samples in the resultant detection error rate is analysed. The effectiveness of the proposed architecture is then evaluated under two specific cases of obfuscation attack: miosis and mydriasis. Results show that robustness to such obfuscation attacks is achieved, since lower error rates than in the case of the non-fused base system are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work considers the problem of building high-fidelity 3D representations of the environment from sensor data acquired by mobile robots. Multi-sensor data fusion allows for more complete and accurate representations, and for more reliable perception, especially when different sensing modalities are used. In this paper, we propose a thorough experimental analysis of the performance of 3D surface reconstruction from laser and mm-wave radar data using Gaussian Process Implicit Surfaces (GPIS), in a realistic field robotics scenario. We first analyse the performance of GPIS using raw laser data alone and raw radar data alone, respectively, with different choices of covariance matrices and different resolutions of the input data. We then evaluate and compare the performance of two different GPIS fusion approaches. The first, state-of-the-art approach directly fuses raw data from laser and radar. The alternative approach proposed in this paper first computes an initial estimate of the surface from each single source of data, and then fuses these two estimates. We show that this method outperforms the state of the art, especially in situations where the sensors react differently to the targets they perceive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vast majority of current robot mapping and navigation systems require specific well-characterized sensors that may require human-supervised calibration and are applicable only in one type of environment. Furthermore, if a sensor degrades in performance, either through damage to itself or changes in environmental conditions, the effect on the mapping system is usually catastrophic. In contrast, the natural world presents robust, reasonably well-characterized solutions to these problems. Using simple movement behaviors and neural learning mechanisms, rats calibrate their sensors for mapping and navigation in an incredibly diverse range of environments and then go on to adapt to sensor damage and changes in the environment over the course of their lifetimes. In this paper, we introduce similar movement-based autonomous calibration techniques that calibrate place recognition and self-motion processes as well as methods for online multisensor weighting and fusion. We present calibration and mapping results from multiple robot platforms and multisensory configurations in an office building, university campus, and forest. With moderate assumptions and almost no prior knowledge of the robot, sensor suite, or environment, the methods enable the bio-inspired RatSLAM system to generate topologically correct maps in the majority of experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. We develop a sheep thoracic spine interbody fusion model to study the suitability of polycaprolactone-based scaffold and recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within the thoracic spine. The surgical approach is a mini- open thoracotomy with relevance to minimally invasive deformity correction surgery for adolescent idiopathic scoliosis. To date there are no studies examining the use of this biodegradable implant in combination with biologics in a sheep thoracic spine model. METHODS. In the present study, six sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone-based scaffold plus 0.54μg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion was assessed at six months post-surgery. RESULTS. Computed Tomographic scanning demonstrated higher fusion grades in the rhBMP-2 plus PCL- based scaffold group in comparison to either PCL-based scaffold alone or autograft. These results were supported by histological evaluations of the respective groups. Biomechanical testing revealed significantly higher stiffness for the rhBMP-2 plus PCL- based scaffold group in all loading directions in comparison to the other two groups. CONCLUSION. The results of this study demonstrate that rhBMP-2 plus PCL- based scaffold is a viable bone graft substitute, providing an optimal environment for thoracic interbody spinal fusion in a large animal model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Well-designed biodegradable scaffolds in combination with bone growth factors offer a valuable alternative to the current gold standard autograft in spinal fusion surgery Yong et al. (2013). Here we report on 6- vs 12- month data set evaluating the longitudinal performance of a CaP coated polycaprolactone (PCL) scaffold loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within a large preclinical animal model. Methods Twelve sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone based scaffold plus 0.54µg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion assessments were performed via high resolution clinical computed tomography and histological evaluation were undertaken at six (n=6) and twelve (n=6) months post-surgery using the Sucato grading system (Sucato et al. 2004). Results The computed tomography fusion grades of the 6- and 12- months in the rhBMP-2 plus PCL- based scaffold group were 1.9 and 2.1 respectively, in the autograft group 1.9 and 1.3 respectively, and in the scaffold alone group 0.9 and 1.17 respectively. There were no statistically significant differences in the fusion scores between 6- and 12- month for the rhBMP plus PCL- based scaffold or PCL – based scaffold alone group however there was a significant reduction in scores in the autograft group. These scores were seen to correlate with histological evaluations of the respective groups. Conclusions The results of this study demonstrate the efficacy of scaffold-based delivery of rhBMP-2 in promoting higher fusion grades at 6- and 12- months in comparison to the scaffold alone or autograft group within the same time frame. Fusion grades achieved at six months using PCL+rhBMP-2 are not significantly increased at twelve months post-surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to build high-fidelity 3D representations of the environment from sensor data is critical for autonomous robots. Multi-sensor data fusion allows for more complete and accurate representations. Furthermore, using distinct sensing modalities (i.e. sensors using a different physical process and/or operating at different electromagnetic frequencies) usually leads to more reliable perception, especially in challenging environments, as modalities may complement each other. However, they may react differently to certain materials or environmental conditions, leading to catastrophic fusion. In this paper, we propose a new method to reliably fuse data from multiple sensing modalities, including in situations where they detect different targets. We first compute distinct continuous surface representations for each sensing modality, with uncertainty, using Gaussian Process Implicit Surfaces (GPIS). Second, we perform a local consistency test between these representations, to separate consistent data (i.e. data corresponding to the detection of the same target by the sensors) from inconsistent data. The consistent data can then be fused together, using another GPIS process, and the rest of the data can be combined as appropriate. The approach is first validated using synthetic data. We then demonstrate its benefit using a mobile robot, equipped with a laser scanner and a radar, which operates in an outdoor environment in the presence of large clouds of airborne dust and smoke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter describes decentralized data fusion algorithms for a team of multiple autonomous platforms. Decentralized data fusion (DDF) provides a useful basis with which to build upon for cooperative information gathering tasks for robotic teams operating in outdoor environments. Through the DDF algorithms, each platform can maintain a consistent global solution from which decisions may then be made. Comparisons will be made between the implementation of DDF using two probabilistic representations. The first, Gaussian estimates and the second Gaussian mixtures are compared using a common data set. The overall system design is detailed, providing insight into the overall complexity of implementing a robust DDF system for use in information gathering tasks in outdoor UAV applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While existing multi-biometic Dempster-Shafer the- ory fusion approaches have demonstrated promising perfor- mance, they do not model the uncertainty appropriately, sug- gesting that further improvement can be achieved. This research seeks to develop a unified framework for multimodal biometric fusion to take advantage of the uncertainty concept of Dempster- Shafer theory, improving the performance of multi-biometric authentication systems. Modeling uncertainty as a function of uncertainty factors affecting the recognition performance of the biometric systems helps to address the uncertainty of the data and the confidence of the fusion outcome. A weighted combination of quality measures and classifiers performance (Equal Error Rate) are proposed to encode the uncertainty concept to improve the fusion. We also found that quality measures contribute unequally to the recognition performance, thus selecting only significant factors and fusing them with a Dempster-Shafer approach to generate an overall quality score play an important role in the success of uncertainty modeling. The proposed approach achieved a competitive performance (approximate 1% EER) in comparison with other Dempster-Shafer based approaches and other conventional fusion approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the Internet becomes deeply embedded into consumers’ daily life, the digital virtual world brings significant influence to consumers’ self and narrative. Prior studies look at consumer self from either from a certain online space or comparing consumers’ physical and digital virtual selves but not the integration of the physical/digital world. This paper aims to explore the meanings of the digital virtual space on consumers’ narrative as a whole (their interests, dreams, or subjectivity). We utilise a postmodern concept of the cyborg to understand the cultural complexity, subjective meanings of, and the extent to which the digital virtual space plays a role in consumers’ self-narrative. We conducted in-depth interviews and gathered three consumer narratives. Our findings indicate that consumers’ narrative contains important fragments from both physical and digital virtual worlds and their physical and digital virtual selves form a feedback loop that strengthen their overall narrative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods are presented for the preparation, ligand density analysis and use of an affinity adsorbent for the purification of a glutathione S-transferase (GST) fusion protein in packed and expanded bed chromatographic processes. The protein is composed of GST fused to a zinc finger transcription factor (ZnF). Glutathione, the affinity ligand for GST purification, is covalently immobilized to a solid-phase adsorbent (Streamline™). The GST–ZnF fusion protein displays a dissociation constant of 0.6 x10-6 M to glutathione immobilized to Streamline™. Ligand density optimization, fusion protein elution conditions (pH and glutathione concentration) and ligand orientation are briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multidimensional data are getting increasing attention from researchers for creating better recommender systems in recent years. Additional metadata provides algorithms with more details for better understanding the interaction between users and items. While neighbourhood-based Collaborative Filtering (CF) approaches and latent factor models tackle this task in various ways effectively, they only utilize different partial structures of data. In this paper, we seek to delve into different types of relations in data and to understand the interaction between users and items more holistically. We propose a generic multidimensional CF fusion approach for top-N item recommendations. The proposed approach is capable of incorporating not only localized relations of user-user and item-item but also latent interaction between all dimensions of the data. Experimental results show significant improvements by the proposed approach in terms of recommendation accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic labeling of white matter fibres in diffusion-weighted brain MRI is vital for comparing brain integrity and connectivity across populations, but is challenging. Whole brain tractography generates a vast set of fibres throughout the brain, but it is hard to cluster them into anatomically meaningful tracts, due to wide individual variations in the trajectory and shape of white matter pathways. We propose a novel automatic tract labeling algorithm that fuses information from tractography and multiple hand-labeled fibre tract atlases. As streamline tractography can generate a large number of false positive fibres, we developed a top-down approach to extract tracts consistent with known anatomy, based on a distance metric to multiple hand-labeled atlases. Clustering results from different atlases were fused, using a multi-stage fusion scheme. Our "label fusion" method reliably extracted the major tracts from 105-gradient HARDI scans of 100 young normal adults. © 2012 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fusing data from multiple sensing modalities, e.g. laser and radar, is a promising approach to achieve resilient perception in challenging environmental conditions. However, this may lead to \emph{catastrophic fusion} in the presence of inconsistent data, i.e. when the sensors do not detect the same target due to distinct attenuation properties. It is often difficult to discriminate consistent from inconsistent data across sensing modalities using local spatial information alone. In this paper we present a novel consistency test based on the log marginal likelihood of a Gaussian process model that evaluates data from range sensors in a relative manner. A new data point is deemed to be consistent if the model statistically improves as a result of its fusion. This approach avoids the need for absolute spatial distance threshold parameters as required by previous work. We report results from object reconstruction with both synthetic and experimental data that demonstrate an improvement in reconstruction quality, particularly in cases where data points are inconsistent yet spatially proximal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study Design This was a randomised controlled trial in patients with degenerative disc disease (DDD) who underwent instrumented posterolateral lumbar fusion (PLF) surgery. Objective The aim of this study was to assess the efficacy of the bone grafting substitute, silicate-substituted calcium phosphate (SiCaP) compared with bone morphogenetic protein (rhBMP-2) and to evaluate clinical outcomes over a period of two years. Methods Patients undergoing PLF surgery for DDD at a single centre were recruited and randomised to one of two groups; SiCaP (n=9) or rhBMP-2 (n=10). One patient withdrew prior to randomisation and another from the rhBMP-2 group after randomisation. The radiological and clinical outcomes were examined and compared. Fusion was assessed at 12 months with computed tomography (CT) and plain radiographs. Clinical outcomes were evaluated by recording measures of pain, quality of life, disability and neurological status from six weeks to two years postoperatively. Results In the SiCaP and rhBMP-2 groups, fusion was observed in 9/9 and 8/9 patients respectively. Pain and disability scores were reduced and quality of life increased in both groups. Leg pain, disability and satisfaction scores were similar between the groups at each postoperative time point, however, back pain was less at six weeks and quality of life was higher at six months in the SiCaP group than the rhBMP-2 group. Conclusions SiCaP and rhBMP-2 were comparable in terms of achieving successful bone growth and fusion. Both groups similarly alleviated pain and improved quality of life, neurological, satisfaction and return to work outcomes following PLF surgery.