493 resultados para Optimal monitoring
Resumo:
As a part of vital infrastructure and transportation networks, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs always make the infrastructure owners difficult to undertake. Structural health monitoring (SHM) is set to assess condition and foresee probable failures of designated bridge(s), so as to monitor the structural health of the bridges. The SHM systems proposed recently are incorporated with Vibration-Based Damage Detection (VBDD) techniques, Statistical Methods and Signal processing techniques and have been regarded as efficient and economical ways to solve the problem. The recent development in damage detection and condition assessment techniques based on VBDD and statistical methods are reviewed. The VBDD methods based on changes in natural frequencies, curvature/strain modes, modal strain energy (MSE) dynamic flexibility, artificial neural networks (ANN) before and after damage and other signal processing methods like Wavelet techniques and empirical mode decomposition (EMD) / Hilbert spectrum methods are discussed here.
Resumo:
This paper reports the initial steps of research on planning of rural networks for MV and LV. In this paper, two different cases are studied. In the first case, 100 loads are distributed uniformly on a 100 km transmission line in a distribution network and in the second case, the load structure become closer to the rural situation. In case 2, 21 loads are located in a distribution system so that their distance is increasing, distance between load 1 and 2 is 3 km, between 2 and 3 is 6 km, etc). These two models to some extent represent the distribution system in urban and rural areas, respectively. The objective function for the design of the optimal system consists of three main parts: cost of transformers, and MV and LV conductors. The bus voltage is expressed as a constraint and should be maintained within a standard level, rising or falling by no more than 5%.
Resumo:
Australia’s current pattern of residential development is typified by relatively low-density subdivision of land and highlights the necessity for development to be more sustainable to avoid unnecessary demand on natural resources and to prevent environmental degradation and to safeguard the environment for future generations. What role can climatically appropriate sub-division design play in decreasing the use of energy required to cool premises by maximising access to natural ventilation? How can this design be achieved?
Resumo:
In this paper, the placement of sectionalizers, as well as, a cross-connection is optimally determined so that the objective function is minimized. The objective function employed in this paper consists of two main parts, the switch cost and the reliability cost. The switch cost is composed of the cost of sectionalizers and cross-connection and the reliability cost is assumed to be proportional to a reliability index, SAIDI. To optimize the allocation of sectionalizers and cross-connection problem realistically, the cost related to each element is considered as discrete. In consequence of binary variables for the availability of sectionalizers, the problem is extremely discrete. Therefore, the probability of local minimum risk is high and a heuristic-based optimization method is needed. A Discrete Particle Swarm Optimization (DPSO) is employed in this paper to deal with this discrete problem. Finally, a testing distribution system is used to validate the proposed method.
Resumo:
Climate change and human activity are subjecting the environment to unprecedented rates of change. Monitoring these changes is an immense task that demands new levels of automated monitoring and analysis. We propose the use of acoustics as a proxy for the time consuming auditing of fauna, especially for determining the presence/absence of species. Acoustic monitoring is deceptively simple; seemingly all that is required is a sound recorder. However there are many major challenges if acoustics are to be used for large scale monitoring of ecosystems. Key issues are scalability and automation. This paper discusses our approach to this important research problem. Our work is being undertaken in collaboration with ecologists interested both in identifying particular species and in general ecosystem health.
Resumo:
The requirement to monitor the rapid pace of environmental change due to global warming and to human development is producing large volumes of data but placing much stress on the capacity of ecologists to store, analyse and visualise that data. To date, much of the data has been provided by low level sensors monitoring soil moisture, dissolved nutrients, light intensity, gas composition and the like. However, a significant part of an ecologist’s work is to obtain information about species diversity, distributions and relationships. This task typically requires the physical presence of an ecologist in the field, listening and watching for species of interest. It is an extremely difficult task to automate because of the higher order difficulties in bandwidth, data management and intelligent analysis if one wishes to emulate the highly trained eyes and ears of an ecologist. This paper is concerned with just one part of the bigger challenge of environmental monitoring – the acquisition and analysis of acoustic recordings of the environment. Our intention is to provide helpful tools to ecologists – tools that apply information technologies and computational technologies to all aspects of the acoustic environment. The on-line system which we are building in conjunction with ecologists offers an integrated approach to recording, data management and analysis. The ecologists we work with have different requirements and therefore we have adopted the toolbox approach, that is, we offer a number of different web services that can be concatenated according to need. In particular, one group of ecologists is concerned with identifying the presence or absence of species and their distributions in time and space. Another group, motivated by legislative requirements for measuring habitat condition, are interested in summary indices of environmental health. In both case, the key issues are scalability and automation.
Resumo:
This paper examines the observable patterns of content creation by Australian political bloggers dur‐ing the 2007 election and its aftermath, thereby providing insight into the level and nature of activity in the Australian political blogosphere during that time. The performance indicators which are identi‐fied through this process enable us to target for further in‐depth research, to be reported in subse‐quent papers, those individual blogs and blog clusters showing especially high or unusual activity as compared to the overall baseline. This research forms the first stage in a larger project to investigate the shape and internal dynamics of the Australian political blogosphere. In this first stage, we tracked the activities of some 230 political blogs and related Websites in Australia from 2 November 2007 (the final month of the federal election campaign, with the election itself taking place on 24 Novem‐ber) to 24 January 2008. We harvested more than 65,000 articles for this study.
Resumo:
Monitoring urban growth and land-use change is an important issue for sustainable infrastructure planning. Rapid urban development, sprawl and increasing population pressure, particularly in developing nations, are resulting in deterioration of infrastructure facilities, loss of productive agricultural lands and open spaces, pollution, health hazards and micro-climatic changes. In addressing these issues effectively, it is crucial to collect up-to-date and accurate data and monitor the changing environment at regular intervals. This chapter discusses the role of geospatial technologies for mapping and monitoring the changing environment and urban structure, where such technologies are highly useful for sustainable infrastructure planning and provision.
Resumo:
The process of structural health monitoring (SHM) involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures and acoustic emission (AE) is one technique that is finding an increasing use. Acoustic emission waves are the stress waves generated by the mechanical deformation of materials. AE waves produced inside a structure can be recorded by means of sensors attached on the surface. Analysis of these recorded signals can locate and assess the extent of damage. This paper describes preliminary studies on the application of AE technique for health monitoring of bridge structures. Crack initiation or structural damage will result in wave propagation in solid and this can take place in various forms. Propagation of these waves is likely to be affected by the dimensions, surface properties and shape of the specimen. This, in turn, will affect source localization. Various laboratory test results will be presented on source localization, using pencil lead break tests. The results from the tests can be expected to aid in enhancement of knowledge of acoustic emission process and development of effective bridge structure diagnostics system.
Resumo:
The aim of this work was to review the existing instrumental methods to monitor airborne nanoparticle in different types of indoor and outdoor environments in order to detect their presence and to characterise their properties. Firstly the terminology and definitions used in this field are discussed, which is followed by a review of the methods to measure particle physical characteristics including number concentration, size distribution and surface area. An extensive discussion is provided on the direct methods for particle elemental composition measurements, as well as on indirect methods providing information on particle volatility and solubility, and thus in turn on volatile and semivolatile compounds of which the particle is composed. A brief summary of broader considerations related to nanoparticle monitoring in different environments concludes the paper.
Resumo:
Existing trauma registries in Australia and New Zealand play an important role in monitoring the management of injured patients. Over the past decade, such monitoring has been translated into changes in clinical processes and practices. Monitoring and changes have been ad hoc, as there are currently no Australasian benchmarks for “optimal” injury management. A binational trauma registry is urgently needed to benchmark injury management to improve outcomes for injured patients.
Resumo:
This research is aimed at addressing problems in the field of asset management relating to risk analysis and decision making based on data from a Supervisory Control and Data Acquisition (SCADA) system. It is apparent that determining risk likelihood in risk analysis is difficult, especially when historical information is unreliable. This relates to a problem in SCADA data analysis because of nested data. A further problem is in providing beneficial information from a SCADA system to a managerial level information system (e.g. Enterprise Resource Planning/ERP). A Hierarchical Model is developed to address the problems. The model is composed of three different Analyses: Hierarchical Analysis, Failure Mode and Effect Analysis, and Interdependence Analysis. The significant contributions from the model include: (a) a new risk analysis model, namely an Interdependence Risk Analysis Model which does not rely on the existence of historical information because it utilises Interdependence Relationships to determine the risk likelihood, (b) improvement of the SCADA data analysis problem by addressing the nested data problem through the Hierarchical Analysis, and (c) presentation of a framework to provide beneficial information from SCADA systems to ERP systems. The case study of a Water Treatment Plant is utilised for model validation.
Resumo:
When complex projects go wrong they can go horribly wrong with severe financial consequences. We are undertaking research to develop leading performance indicators for complex projects, metrics to provide early warning of potential difficulties. The assessment of success of complex projects can be made by a range of stakeholders over different time scales, against different levels of project results: the project’s outputs at the end of the project; the project’s outcomes in the months following project completion; and the project’s impact in the years following completion. We aim to identify leading performance indicators, which may include both success criteria and success factors, and which can be measured by the project team during project delivery to forecast success as assessed by key stakeholders in the days, months and years following the project. The hope is the leading performance indicators will act as alarm bells to show if a project is diverting from plan so early corrective action can be taken. It may be that different combinations of the leading performance indicators will be appropriate depending on the nature of project complexity. In this paper we develop a new model of project success, whereby success is assessed by different stakeholders over different time frames against different levels of project results. We then relate this to measurements that can be taken during project delivery. A methodology is described to evaluate the early parts of this model. Its implications and limitations are described. This paper describes work in progress.
Resumo:
Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.
Resumo:
To allocate and size capacitors in a distribution system, an optimization algorithm, called Discrete Particle Swarm Optimization (DPSO), is employed in this paper. The objective is to minimize the transmission line loss cost plus capacitors cost. During the optimization procedure, the bus voltage, the feeder current and the reactive power flowing back to the source side should be maintained within standard levels. To validate the proposed method, the semi-urban distribution system that is connected to bus 2 of the Roy Billinton Test System (RBTS) is used. This 37-bus distribution system has 22 loads being located in the secondary side of a distribution substation (33/11 kV). Reducing the transmission line loss in a standard system, in which the transmission line loss consists of only about 6.6 percent of total power, the capabilities of the proposed technique are seen to be validated.