284 resultados para Numerical calculation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the accuracy of dose calculations in intensity-modulated radiotherapy of the head and neck is essential for clinical confidence in these highly conformal treatments. High dose gradients are frequently placed very close to critical structures, such as the spinal cord, and good coverage of complex shaped nodal target volumes is important for long term-local control. A phantom study is presented comparing the performance of standard clinical pencil-beam and collapsed-cone dose algorithms to Monte Carlo calculation and three-dimensional gel dosimetry measurement. All calculations and measurements are normalized to the median dose in the primary planning target volume, making this a purely relative study. The phantom simulates tissue, air and bone for a typical neck section and is treated using an inverse-planned 5-field IMRT treatment, similar in character to clinically used class solutions. Results indicate that the pencil-beam algorithm fails to correctly model the relative dose distribution surrounding the air cavity, leading to an overestimate of the target coverage. The collapsed-cone and Monte Carlo results are very similar, indicating that the clinical collapsed-cone algorithm is perfectly sufficient for routine clinical use. The gel measurement shows generally good agreement with the collapsed-cone and Monte Carlo calculated dose, particularly in the spinal cord dose and nodal target coverage, thus giving greater confidence in the use of this class solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the costs associated with greenfield residential development are apparent and tangible. For example, regulatory fees, government taxes, acquisition costs, selling fees, commissions and others are all relatively easily identified since they represent actual costs incurred at a given point in time. However, identification of holding costs are not always immediately evident since by contrast they characteristically lack visibility. One reason for this is that, for the most part, they are typically assessed over time in an ever-changing environment. In addition, wide variations exist in development pipeline components: they are typically represented from anywhere between a two and over sixteen years time period - even if located within the same geographical region. Determination of the starting and end points, with regards holding cost computation, can also prove problematic. Furthermore, the choice between application of prevailing inflation, or interest rates, or a combination of both over time, adds further complexity. Although research is emerging in these areas, a review of the literature reveals attempts to identify holding cost components are limited. Their quantification (in terms of relative weight or proportionate cost to a development project) is even less apparent; in fact, the computation and methodology behind the calculation of holding costs varies widely and in some instances completely ignored. In addition, it may be demonstrated that ambiguities exists in terms of the inclusion of various elements of holding costs and assessment of their relative contribution. Yet their impact on housing affordability is widely acknowledged to be profound, with their quantification potentially maximising the opportunities for delivering affordable housing. This paper seeks to build on earlier investigations into those elements related to holding costs, providing theoretical modelling of the size of their impact - specifically on the end user. At this point the research is reliant upon quantitative data sets, however additional qualitative analysis (not included here) will be relevant to account for certain variations between expectations and actual outcomes achieved by developers. Although this research stops short of cross-referencing with a regional or international comparison study, an improved understanding of the relationship between holding costs, regulatory charges, and housing affordability results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power load flow analysis is essential for system planning, operation, development and maintenance. Its application on railway supply system is no exception. Railway power supplies system distinguishes itself in terms of load pattern and mobility, as well as feeding system structure. An attempt has been made to apply probability load flow (PLF) techniques on electrified railways in order to examine the loading on the feeding substations and the voltage profiles of the trains. This study is to formulate a simple and reliable model to support the necessary calculations for probability load flow analysis in railway systems with autotransformer (AT) feeding system, and describe the development of a software suite to realise the computation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The health of tollbooth workers is seriously threatened by long-term exposure to polluted air from vehicle exhausts. Using traffic data collected at a toll plaza, vehicle movements were simulated by a system dynamics model with different traffic volumes and toll collection procedures. This allowed the average travel time of vehicles to be calculated. A three-dimension Computational Fluid Dynamics (CFD) model was used with a k–ε turbulence model to simulate pollutant dispersion at the toll plaza for different traffic volumes and toll collection procedures. It was shown that pollutant concentration around tollbooths increases as traffic volume increases. Whether traffic volume is low or high (1500 vehicles/h or 2500 vehicles/h), pollutant concentration decreases if electronic toll collection (ETC) is adopted. In addition, pollutant concentration around tollbooths decreases as the proportion of ETC-equipped vehicles increases. However, if the proportion of ETC-equipped vehicles is very low and the traffic volume is not heavy, then pollutant concentration increases as the number of ETC lanes increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most research on numerical development in children is behavioural, focusing on accuracy and response time in different problem formats. However, Temple and Posner (1998) used ERPs and the numerical distance task with 5-year-olds to show that the development of numerical representations is difficult to disentangle from the development of the executive components of response organization and execution. Here we use the numerical Stroop paradigm (NSP) and ERPs to study possible executive interference in numerical processing tasks in 6–8-year-old children. In the NSP, the numerical magnitude of the digits is task-relevant and the physical size of the digits is task-irrelevant. We show that younger children are highly susceptible to interference from irrelevant physical information such as digit size, but that access to the numerical representation is almost as fast in young children as in adults. We argue that the developmental trajectories for executive function and numerical processing may act together to determine numerical development in young children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM), a molecular dynamics (MD) simulation is performed to study the single-crystal copper nanowire with surface defects through tension. The tension simulations for nanowire without defect are first carried out under different temperatures, strain rates and time steps and then surface defect effects for nanowire are investigated. The stress-strain curves obtained by the MD simulations of various strain rates show a rate below 1 x 10(9) s-1 will exert less effect on the yield strength and yield point, and the Young's modulus is independent of strain rate. a time step below 5 fs is recommend for the atomic model during the MD simulation. It is observed that high temperature leads to low Young's modulus, as well as the yield strength. The surface defects on nanowires are systematically studied in considering different defect orientations. It is found that the surface defect serves as a dislocation source, and the yield strength shows 34.20% decresse with 45 degree surface defect. Both yield strength and yield point are significantly influenced by the surface defects, except the Young's modulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Saffman-Taylor finger problem is to predict the shape and,in particular, width of a finger of fluid travelling in a Hele-Shaw cell filled with a different, more viscous fluid. In experiments the width is dependent on the speed of propagation of the finger, tending to half the total cell width as the speed increases. To predict this result mathematically, nonlinear effects on the fluid interface must be considered; usually surface tension is included for this purpose. This makes the mathematical problem suffciently diffcult that asymptotic or numerical methods must be used. In this paper we adapt numerical methods used to solve the Saffman-Taylor finger problem with surface tension to instead include the effect of kinetic undercooling, a regularisation effect important in Stefan melting-freezing problems, for which Hele-Shaw flow serves as a leading order approximation when the specific heat of a substance is much smaller than its latent heat. We find the existence of a solution branch where the finger width tends to zero as the propagation speed increases, disagreeing with some aspects of the asymptotic analysis of the same problem. We also find a second solution branch, supporting the idea of a countably infinite number of branches as with the surface tension problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Focusing on the conditions that an optimization problem may comply with, the so-called convergence conditions have been proposed and sequentially a stochastic optimization algorithm named as DSZ algorithm is presented in order to deal with both unconstrained and constrained optimizations. The principle is discussed in the theoretical model of DSZ algorithm, from which we present the practical model of DSZ algorithm. Practical model efficiency is demonstrated by the comparison with the similar algorithms such as Enhanced simulated annealing (ESA), Monte Carlo simulated annealing (MCS), Sniffer Global Optimization (SGO), Directed Tabu Search (DTS), and Genetic Algorithm (GA), using a set of well-known unconstrained and constrained optimization test cases. Meanwhile, further attention goes to the strategies how to optimize the high-dimensional unconstrained problem using DSZ algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study a new immobilized flat plate photocatalytic reactor for wastewater treatment has been investigated using computational fluid dynamics (CFD). The reactor consists of a reactor inlet, a reactive section where the catalyst is coated, and outlet parts. For simulation, the reactive section of the reactor was modelled with an array of baffles. In order to optimize the fluid mixing and reactor design, this study attempts to investigate the influence of baffles with differing heights on the flow field of the flat plate reactor. The results obtained from the simulation of a baffled flat plate reactor hydrodynamics for differing baffle heights for certain positions are presented. Under the conditions simulated, the qualitative flow features, such as the distribution of local stream lines, velocity contours, and high shear region, boundary layers separation, vortex formation, and the underlying mechanism are examined. At low and high Re numbers, the influence of baffle heights on the distribution of species mass fraction of a model pollutant are also highlighted. The simulation of qualitative and quantitative properties of fluid dynamics in a baffled reactor provides valuable insight to fully understand the effect of baffles and their role on the flow pattern, behaviour, and features of wastewater treatment using a photocatalytic reactor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation is a useful technique for probing the mechanical properties of bone, and finite element (FE) modeling of the indentation allows inverse determination of elasto-plastic constitutive properties. However, all but one FE study to date have assumed frictionless contact between indenter and bone. The aim of this study was to explore the effect of friction in simulations of bone nanoindentation. Two dimensional axisymmetric FE simulations were performed using a spheroconical indenter of tip radius 0.6 m and angle 90°. The coefficient of friction between indenter and bone was varied between 0.0 (frictionless) and 0.3. Isotropic linear elasticity was used in all simulations, with bone elastic modulus E=13.56GPa and Poisson‟s ratio f 0.3. Plasticity was incorporated using both Drucker-Prager and von Mises yield surfaces. Friction had a modest effect on the predicted force-indentation curve for both von Mises and Drucker-Prager plasticity, reducing maximum indenter displacement by 10% and 20% respectively as friction coefficient was increased from zero to 0.3 (at a maximum indenter force of 5mN). However, friction has a much greater effect on predicted pile-up after indentation, reducing predicted pile-up from 0.27 to 0.11 m with a von Mises model, and from 0.09 to 0.02 m with Drucker-Prager plasticity. We conclude that it is potentially important to include friction in nanoindentation simulations of bone if pile-up is used to compare simulation results with experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We treat two related moving boundary problems. The first is the ill-posed Stefan problem for melting a superheated solid in one Cartesian coordinate. Mathematically, this is the same problem as that for freezing a supercooled liquid, with applications to crystal growth. By applying a front-fixing technique with finite differences, we reproduce existing numerical results in the literature, concentrating on solutions that break down in finite time. This sort of finite-time blow-up is characterised by the speed of the moving boundary becoming unbounded in the blow-up limit. The second problem, which is an extension of the first, is proposed to simulate aspects of a particular two-phase Stefan problem with surface tension. We study this novel moving boundary problem numerically, and provide results that support the hypothesis that it exhibits a similar type of finite-time blow-up as the more complicated two-phase problem. The results are unusual in the sense that it appears the addition of surface tension transforms a well-posed problem into an ill-posed one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the variable-order Galilei advection diffusion equation with a nonlinear source term. A numerical scheme with first order temporal accuracy and second order spatial accuracy is developed to simulate the equation. The stability and convergence of the numerical scheme are analyzed. Besides, another numerical scheme for improving temporal accuracy is also developed. Finally, some numerical examples are given and the results demonstrate the effectiveness of theoretical analysis. Keywords: The variable-order Galilei invariant advection diffusion equation with a nonlinear source term; The variable-order Riemann–Liouville fractional partial derivative; Stability; Convergence; Numerical scheme improving temporal accuracy