164 resultados para Non-constant coefficient diffusion equations


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a space fractional di®usion equation (SFDE) with non- homogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix raised to the same fractional power. Analytic solutions of the SFDE are derived. Finally, some numerical results are given to demonstrate that the MTT is a computationally e±cient and accurate method for solving SFDE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider the variable-order nonlinear fractional diffusion equation View the MathML source where xRα(x,t) is a generalized Riesz fractional derivative of variable order View the MathML source and the nonlinear reaction term f(u,x,t) satisfies the Lipschitz condition |f(u1,x,t)-f(u2,x,t)|less-than-or-equals, slantL|u1-u2|. A new explicit finite-difference approximation is introduced. The convergence and stability of this approximation are proved. Finally, some numerical examples are provided to show that this method is computationally efficient. The proposed method and techniques are applicable to other variable-order nonlinear fractional differential equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider the following non-linear fractional reaction–subdiffusion process (NFR-SubDP): Formula where f(u, x, t) is a linear function of u, the function g(u, x, t) satisfies the Lipschitz condition and 0Dt1–{gamma} is the Riemann–Liouville time fractional partial derivative of order 1 – {gamma}. We propose a new computationally efficient numerical technique to simulate the process. Firstly, the NFR-SubDP is decoupled, which is equivalent to solving a non-linear fractional reaction–subdiffusion equation (NFR-SubDE). Secondly, we propose an implicit numerical method to approximate the NFR-SubDE. Thirdly, the stability and convergence of the method are discussed using a new energy method. Finally, some numerical examples are presented to show the application of the present technique. This method and supporting theoretical results can also be applied to fractional integrodifferential equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major focus of research in nanotechnology is the development of novel, high throughput techniques for fabrication of arbitrarily shaped surface nanostructures of sub 100 nm to atomic scale. A related pursuit is the development of simple and efficient means for parallel manipulation and redistribution of adsorbed atoms, molecules and nanoparticles on surfaces – adparticle manipulation. These techniques will be used for the manufacture of nanoscale surface supported functional devices in nanotechnologies such as quantum computing, molecular electronics and lab-on-achip, as well as for modifying surfaces to obtain novel optical, electronic, chemical, or mechanical properties. A favourable approach to formation of surface nanostructures is self-assembly. In self-assembly, nanostructures are grown by aggregation of individual adparticles that diffuse by thermally activated processes on the surface. The passive nature of this process means it is generally not suited to formation of arbitrarily shaped structures. The self-assembly of nanostructures at arbitrary positions has been demonstrated, though these have typically required a pre-patterning treatment of the surface using sophisticated techniques such as electron beam lithography. On the other hand, a parallel adparticle manipulation technique would be suited for directing the selfassembly process to occur at arbitrary positions, without the need for pre-patterning the surface. There is at present a lack of techniques for parallel manipulation and redistribution of adparticles to arbitrary positions on the surface. This is an issue that needs to be addressed since these techniques can play an important role in nanotechnology. In this thesis, we propose such a technique – thermal tweezers. In thermal tweezers, adparticles are redistributed by localised heating of the surface. This locally enhances surface diffusion of adparticles so that they rapidly diffuse away from the heated regions. Using this technique, the redistribution of adparticles to form a desired pattern is achieved by heating the surface at specific regions. In this project, we have focussed on the holographic implementation of this approach, where the surface is heated by holographic patterns of interfering pulsed laser beams. This implementation is suitable for the formation of arbitrarily shaped structures; the only condition is that the shape can be produced by holographic means. In the simplest case, the laser pulses are linearly polarised and intersect to form an interference pattern that is a modulation of intensity along a single direction. Strong optical absorption at the intensity maxima of the interference pattern results in approximately a sinusoidal variation of the surface temperature along one direction. The main aim of this research project is to investigate the feasibility of the holographic implementation of thermal tweezers as an adparticle manipulation technique. Firstly, we investigate theoretically the surface diffusion of adparticles in the presence of sinusoidal modulation of the surface temperature. Very strong redistribution of adparticles is predicted when there is strong interaction between the adparticle and the surface, and the amplitude of the temperature modulation is ~100 K. We have proposed a thin metallic film deposited on a glass substrate heated by interfering laser beams (optical wavelengths) as a means of generating very large amplitude of surface temperature modulation. Indeed, we predict theoretically by numerical solution of the thermal conduction equation that amplitude of the temperature modulation on the metallic film can be much greater than 100 K when heated by nanosecond pulses with an energy ~1 mJ. The formation of surface nanostructures of less than 100 nm in width is predicted at optical wavelengths in this implementation of thermal tweezers. Furthermore, we propose a simple extension to this technique where spatial phase shift of the temperature modulation effectively doubles or triples the resolution. At the same time, increased resolution is predicted by reducing the wavelength of the laser pulses. In addition, we present two distinctly different, computationally efficient numerical approaches for theoretical investigation of surface diffusion of interacting adparticles – the Monte Carlo Interaction Method (MCIM) and the random potential well method (RPWM). Using each of these approaches we have investigated thermal tweezers for redistribution of both strongly and weakly interacting adparticles. We have predicted that strong interactions between adparticles can increase the effectiveness of thermal tweezers, by demonstrating practically complete adparticle redistribution into the low temperature regions of the surface. This is promising from the point of view of thermal tweezers applied to directed self-assembly of nanostructures. Finally, we present a new and more efficient numerical approach to theoretical investigation of thermal tweezers of non-interacting adparticles. In this approach, the local diffusion coefficient is determined from solution of the Fokker-Planck equation. The diffusion equation is then solved numerically using the finite volume method (FVM) to directly obtain the probability density of adparticle position. We compare predictions of this approach to those of the Ermak algorithm solution of the Langevin equation, and relatively good agreement is shown at intermediate and high friction. In the low friction regime, we predict and investigate the phenomenon of ‘optimal’ friction and describe its occurrence due to very long jumps of adparticles as they diffuse from the hot regions of the surface. Future research directions, both theoretical and experimental are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new steady state method for determination of the electron diffusion length in dye-sensitized solar cells (DSCs) is described and illustrated with data obtained using cells containing three different types of electrolyte. The method is based on using near-IR absorbance methods to establish pairs of illumination intensity for which the total number of trapped electrons is the same at open circuit (where all electrons are lost by interfacial electron transfer) as at short circuit (where the majority of electrons are collected at the contact). Electron diffusion length values obtained by this method are compared with values derived by intensity modulated methods and by impedance measurements under illumination. The results indicate that the values of electron diffusion length derived from the steady state measurements are consistently lower than the values obtained by the non steady-state methods. For all three electrolytes used in the study, the electron diffusion length was sufficiently high to guarantee electron collection efficiencies greater than 90%. Measurement of the trap distributions by near-IR absorption confirmed earlier observations of much higher electron trap densities for electrolytes containing Li+ ions. It is suggested that the electron trap distributions may not be intrinsic properties of the TiO2 nanoparticles, but may be associated with electron-ion interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental investigation has been made of a round, non-buoyant plume of nitric oxide, NO, in a turbulent grid flow of ozone, 03, using the Turbulent Smog Chamber at the University of Sydney. The measurements have been made at a resolution not previously reported in the literature. The reaction is conducted at non-equilibrium so there is significant interaction between turbulent mixing and chemical reaction. The plume has been characterized by a set of constant initial reactant concentration measurements consisting of radial profiles at various axial locations. Whole plume behaviour can thus be characterized and parameters are selected for a second set of fixed physical location measurements where the effects of varying the initial reactant concentrations are investigated. Careful experiment design and specially developed chemilurninescent analysers, which measure fluctuating concentrations of reactive scalars, ensure that spatial and temporal resolutions are adequate to measure the quantities of interest. Conserved scalar theory is used to define a conserved scalar from the measured reactive scalars and to define frozen, equilibrium and reaction dominated cases for the reactive scalars. Reactive scalar means and the mean reaction rate are bounded by frozen and equilibrium limits but this is not always the case for the reactant variances and covariances. The plume reactant statistics are closer to the equilibrium limit than those for the ambient reactant. The covariance term in the mean reaction rate is found to be negative and significant for all measurements made. The Toor closure was found to overestimate the mean reaction rate by 15 to 65%. Gradient model turbulent diffusivities had significant scatter and were not observed to be affected by reaction. The ratio of turbulent diffusivities for the conserved scalar mean and that for the r.m.s. was found to be approximately 1. Estimates of the ratio of the dissipation timescales of around 2 were found downstream. Estimates of the correlation coefficient between the conserved scalar and its dissipation (parallel to the mean flow) were found to be between 0.25 and the significant value of 0.5. Scalar dissipations for non-reactive and reactive scalars were found to be significantly different. Conditional statistics are found to be a useful way of investigating the reactive behaviour of the plume, effectively decoupling the interaction of chemical reaction and turbulent mixing. It is found that conditional reactive scalar means lack significant transverse dependence as has previously been found theoretically by Klimenko (1995). It is also found that conditional variance around the conditional reactive scalar means is relatively small, simplifying the closure for the conditional reaction rate. These properties are important for the Conditional Moment Closure (CMC) model for turbulent reacting flows recently proposed by Klimenko (1990) and Bilger (1993). Preliminary CMC model calculations are carried out for this flow using a simple model for the conditional scalar dissipation. Model predictions and measured conditional reactive scalar means compare favorably. The reaction dominated limit is found to indicate the maximum reactedness of a reactive scalar and is a limiting case of the CMC model. Conventional (unconditional) reactive scalar means obtained from the preliminary CMC predictions using the conserved scalar p.d.f. compare favorably with those found from experiment except where measuring position is relatively far upstream of the stoichiometric distance. Recommendations include applying a full CMC model to the flow and investigations both of the less significant terms in the conditional mean species equation and the small variation of the conditional mean with radius. Forms for the p.d.f.s, in addition to those found from experiments, could be useful for extending the CMC model to reactive flows in the atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technological environment in which contemporary small- and medium-sized enterprises (SMEs) operate can only be described as dynamic. The exponential rate of technological change, characterised by perceived increases in the benefits associated with various technologies, shortening product life cycles and changing standards, provides for the SME a complex and challenging operational context. The primary aim of this research was to identify the needs of SMEs in regional areas for mobile data technologies (MDT). In this study a distinction was drawn between those respondents who were full-adopters of technology, those who were partial-adopters, and those who were non-adopters and these three segments articulated different needs and requirements for MDT. Overall, the needs of regional SMEs for MDT can be conceptualised into three areas where the technology will assist business practices; communication, e-commerce and security

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, the numerical modelling and simulation for anomalous subdiffusion equation (ASDE), which is a type of fractional partial differential equation( FPDE) and has been found with widely applications in modern engineering and sciences, are attracting more and more attentions. The current dominant numerical method for modelling ASDE is Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings. This paper aims to develop an implicit meshless approach based on the radial basis functions (RBF) for numerical simulation of the non-linear ASDE. The discrete system of equations is obtained by using the meshless shape functions and the strong-forms. The stability and convergence of this meshless approach are then discussed and theoretically proven. Several numerical examples with different problem domains are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. The results obtained by the meshless formulations are also compared with those obtained by FDM in terms of their accuracy and efficiency. It is concluded that the present meshless formulation is very effective for the modeling and simulation of the ASDE. Therefore, the meshless technique should have good potential in development of a robust simulation tool for problems in engineering and science which are governed by the various types of fractional differential equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past three decades, the subject of fractional calculus (that is, calculus of integrals and derivatives of arbitrary order) has gained considerable popularity and importance, mainly due to its demonstrated applications in numerous diverse and widespread fields in science and engineering. For example, fractional calculus has been successfully applied to problems in system biology, physics, chemistry and biochemistry, hydrology, medicine, and finance. In many cases these new fractional-order models are more adequate than the previously used integer-order models, because fractional derivatives and integrals enable the description of the memory and hereditary properties inherent in various materials and processes that are governed by anomalous diffusion. Hence, there is a growing need to find the solution behaviour of these fractional differential equations. However, the analytic solutions of most fractional differential equations generally cannot be obtained. As a consequence, approximate and numerical techniques are playing an important role in identifying the solution behaviour of such fractional equations and exploring their applications. The main objective of this thesis is to develop new effective numerical methods and supporting analysis, based on the finite difference and finite element methods, for solving time, space and time-space fractional dynamical systems involving fractional derivatives in one and two spatial dimensions. A series of five published papers and one manuscript in preparation will be presented on the solution of the space fractional diffusion equation, space fractional advectiondispersion equation, time and space fractional diffusion equation, time and space fractional Fokker-Planck equation with a linear or non-linear source term, and fractional cable equation involving two time fractional derivatives, respectively. One important contribution of this thesis is the demonstration of how to choose different approximation techniques for different fractional derivatives. Special attention has been paid to the Riesz space fractional derivative, due to its important application in the field of groundwater flow, system biology and finance. We present three numerical methods to approximate the Riesz space fractional derivative, namely the L1/ L2-approximation method, the standard/shifted Gr¨unwald method, and the matrix transform method (MTM). The first two methods are based on the finite difference method, while the MTM allows discretisation in space using either the finite difference or finite element methods. Furthermore, we prove the equivalence of the Riesz fractional derivative and the fractional Laplacian operator under homogeneous Dirichlet boundary conditions – a result that had not previously been established. This result justifies the aforementioned use of the MTM to approximate the Riesz fractional derivative. After spatial discretisation, the time-space fractional partial differential equation is transformed into a system of fractional-in-time differential equations. We then investigate numerical methods to handle time fractional derivatives, be they Caputo type or Riemann-Liouville type. This leads to new methods utilising either finite difference strategies or the Laplace transform method for advancing the solution in time. The stability and convergence of our proposed numerical methods are also investigated. Numerical experiments are carried out in support of our theoretical analysis. We also emphasise that the numerical methods we develop are applicable for many other types of fractional partial differential equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past decade, a significant amount of research has been conducted internationally with the aim of developing, implementing, and verifying "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures. Application of these methods permits comprehensive assessment of the actual failure modes and ultimate strengths of structural systems in practical design situations, without resort to simplified elastic methods of analysis and semi-empirical specification equations. Advanced analysis has the potential to extend the creativity of structural engineers and simplify the design process, while ensuring greater economy and more uniform safety with respect to the ultimate limit state. The application of advanced analysis methods has previously been restricted to steel frames comprising only members with compact cross-sections that are not subject to the effects of local buckling. This precluded the use of advanced analysis from the design of steel frames comprising a significant proportion of the most commonly used Australian sections, which are non-compact and subject to the effects of local buckling. This thesis contains a detailed description of research conducted over the past three years in an attempt to extend the scope of advanced analysis by developing methods that include the effects of local buckling in a non-linear analysis formulation, suitable for practical design of steel frames comprising non-compact sections. Two alternative concentrated plasticity formulations are presented in this thesis: the refined plastic hinge method and the pseudo plastic zone method. Both methods implicitly account for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. The accuracy and precision of the methods for the analysis of steel frames comprising non-compact sections has been established by comparison with a comprehensive range of analytical benchmark frame solutions. Both the refined plastic hinge and pseudo plastic zone methods are more accurate and precise than the conventional individual member design methods based on elastic analysis and specification equations. For example, the pseudo plastic zone method predicts the ultimate strength of the analytical benchmark frames with an average conservative error of less than one percent, and has an acceptable maximum unconservati_ve error of less than five percent. The pseudo plastic zone model can allow the design capacity to be increased by up to 30 percent for simple frames, mainly due to the consideration of inelastic redistribution. The benefits may be even more significant for complex frames with significant redundancy, which provides greater scope for inelastic redistribution. The analytical benchmark frame solutions were obtained using a distributed plasticity shell finite element model. A detailed description of this model and the results of all the 120 benchmark analyses are provided. The model explicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. Its accuracy was verified by comparison with a variety of analytical solutions and the results of three large-scale experimental tests of steel frames comprising non-compact sections. A description of the experimental method and test results is also provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The collective purpose of these two studies was to determine a link between the V02 slow component and the muscle activation patterns that occur during cycling. Six, male subjects performed an incremental cycle ergometer exercise test to determine asub-TvENT (i.e. 80% of TvENT) and supra-TvENT (TvENT + 0.75*(V02 max - TvENT) work load. These two constant work loads were subsequently performed on either three or four occasions for 8 mins each, with V02 captured on a breath-by-breath basis for every test, and EMO of eight major leg muscles collected on one occasion. EMG was collected for the first 10 s of every 30 s period, except for the very first 10 s period. The V02 data was interpolated, time aligned, averaged and smoothed for both intensities. Three models were then fitted to the V02 data to determine the kinetics responses. One of these models was mono-exponential, while the other two were biexponential. A second time delay parameter was the only difference between the two bi-exponential models. An F-test was used to determine significance between the biexponential models using the residual sum of squares term for each model. EMO was integrated to obtain one value for each 10 s period, per muscle. The EMG data was analysed by a two-way repeated measures ANOV A. A correlation was also used to determine significance between V02 and IEMG. The V02 data during the sub-TvENT intensity was best described by a mono-exponential response. In contrast, during supra-TvENT exercise the two bi-exponential models best described the V02 data. The resultant F-test revealed no significant difference between the two models and therefore demonstrated that the slow component was not delayed relative to the onset of the primary component. Furthermore, only two parameters were deemed to be significantly different based upon the two models. This is in contrast to other findings. The EMG data, for most muscles, appeared to follow the same pattern as V02 during both intensities of exercise. On most occasions, the correlation coefficient demonstrated significance. Although some muscles demonstrated the same relative increase in IEMO based upon increases in intensity and duration, it cannot be assumed that these muscles increase their contribution to V02 in a similar fashion. Larger muscles with a higher percentage of type II muscle fibres would have a larger increase in V02 over the same increase in intensity.