116 resultados para NITRILE OXIDES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The degree of diversity or similarity detected in comets depends primarily on the lifetimes of the individual cometary nuclei at the time of analysis. It is inherent in our understanding of cometary orbital dynamics and the seminal model of comet origins that cometary evolution is the natural order of events in our Solar System. Thus, predictions of cometary behaviour in terms of bulk physical, mineralogical or chemical parameters should contain an appreciation of temporal variation(s). Previously, Rietmeijer and Mackinnon [1987] developed mineralogical bases for the chemical evolution of cometary nuclei primarily with regard to the predominantly silicate fraction of comet nuclei. We suggested that alteration of solids in cometary nuclei should be expected and that indications of likely reactants and products can be derived from judicious comparison with terrestrial diagenetic environments which include hydrocryogenic and low-temperature aqueous alterations. In a further development of this concept, Rietmeijer [1988] provides indirect evidence for the formation of sulfides and oxides in comet nuclei. Furthermore, Rietmeijer [1988] noted that timescales for hydrocryogenic and low-temperature reactions involving liquid water are probably adequate for relatively mature comets, e.g. P/comet Halley. In this paper, we will address the evolution of comet nuclei physical parameters such as solid particle grain size, porosity and density. In natural environments, chemical evolution (e.g. mineral reactions) is often accompanied by changes in physical properties. These concurrent changes are well-documented in the terrestrial geological literature, especially in studies of sediment diagenesis and we suggest that similar basic principles apply within the upper few meters of active comet nuclei. The database for prediction of comet nuclei physical parameters is, in principle, the same as used for the proposition of chemical evolution. We use detailed mineralogical studies of chondritic interplanetary dust particles (IDPS) as a guide to the likely constitution of mature comets traversing the inner Solar System. While there is, as yet, no direct proof that a specific sub-group or type of chondritic IDP is derived from a specific comet, it is clear that these particles are extraterrestrial in origin and that a certain portion of the interplanetary flux received by the Earth is cometary in origin. Two chondritic porous (CP) IDPS, sample numbers W701OA2 and W7029CI, from the Johnson Space Center Cosmic Dust Collection have been selected for this study of putative cometary physical parameters. This particular type of particle is considered a likely candidate for a cometary origin on the basis of mineralogy, bulk composition and morphology. While many IDPs have been subjected to intensive study over the past decade, we can develop a physical parameter model on only these two CP IDPs because few others have been studied in sufficient detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The composition of a series of hydroxycarbonate precursors to copper/zinc oxide methanol synthesis catalysts prepared under conditions reported as optimum for catalytic activity has been studied. Techniques employed included thermogravimetry (TG), temperature-programmed decomposition (TPD), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and Raman and FTIR spectroscopies. Evidence was obtained for various structural phases including hydrozincite, copper hydrozincite, aurichalcite, zincian malachite and malachite (the concentrations of which depended upon the exact Cu/Zn ratio used). Significantly, previously reported phases such as gerhardite and rosasite were not identified when catalysts were synthesized at optimum solution pH and temperature values, and after appropriate aging periods. Calcination of the hydroxycarbonate precursors resulted in the formation of catalysts containing an intimate mixture of copper and zinc oxides. Temperature-programmed reduction (TPR) revealed that a number of discrete copper oxide species were present in the catalyst, the precise concentrations of which were determined to be related to the structure of the catalyst precursor. Copper hydrozincite decomposed to give zinc oxide particles decorated by highly dispersed, small copper oxide species. Aurichalcite appeared to result ultimately in the most intimately mixed catalyst structure whereas zincian malachite decomposed to produce larger copper oxide and zinc oxide grains. The reason for the stabilization of small copper oxide and zinc oxide clusters by aurichalcite was investigated by using carefully selected calcination temperatures. It was concluded that the unique formation of an 'anion-modified' oxide resulting from the initial decomposition stage of aurichalcite was responsible for the 'binding' of copper species to zinc moieties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon dioxide reforming of methane produces synthesis gas with a low hydrogen to carbon monoxide ratio, which is desirable for many industrial synthesis processes. This reaction also has very important environmental implications since both methane and carbon dioxide contribute to the greenhouse effect. Converting these gases into a valuable feedstock may significantly reduce the atmospheric emissions of CO2 and CH4. In this paper, we present a comprehensive review on the thermodynamics, catalyst selection and activity, reaction mechanism, and kinetics of this important reaction. Recently, research has centered on the development of catalysts and the feasible applications of this reaction in industry. Group VIII metals supported on oxides are found to be effective for this reason. However, carbon deposition causing catalyst deactivation is the major problem inhibiting the industrial application of the CO2/CH4 reaction. Ni-based catalysts impregnated on certain supports show carbon-free operation and thus attract much attention. To develop an effective catalyst for CO2 reforming of CH4 and accelerate the commercial application of the reaction, the following are identified to be the most important areas for future work: (1) selection of metal and support and studying the effect of their interaction on catalyst activity; (2) the effect of different promoter on catalyst activity; (3) the reaction mechanism and kinetics; and (4) pilot reactor performance and scale-up operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanorod forms of metal oxides is recognised as one of the most remarkable morphologies. Their structure and functionality have driven important advancements in a vast range of electronic devices and applications. In this work, we postulate a novel concept to explain how numerous localised surface states can be engineered into the bandgap of niobium oxide nanorods using tungsten. We discuss their contributions as local state surface charges for the modulation of a Schottky barrier height, relative dielectric constant and their respective conduction mechanisms. Their effect on the hydrogen gas molecule interactions mechanisms are also examined herein. We synthesised niobium tungsten oxide (Nb17W2O25) nanorods via a hydrothermal growth method and evaluated the Schottky barrier height, ideality factor, dielectric constant and trap energy level from the measured I-V vs temperature characteristics in the presence of air and hydrogen to show the validity of our postulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The body of the thesis contained two separate elements which made an original contribution to fundamental understanding in the areas of photocatalysis, chemical synthesis and water treatment. Research on chemical reactions catalyzed by noble metal nanoparticles (such as gold) or surface complex grafted metal oxides which can be driven by sunlight at ambient temperature and the second element on radioactive cesium (137Cs+) cations and iodine (125I-) anions recovery by the unique structural features of titanate nanostructures for firmly capture and safe storage; the works has been all published in journals that are rated at the top of their respective fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructures of YBa2Cu3O7-δ ceramics prepared from freeze dried powders and containing an excess of CuO have been studied by analytical electron microscopy. Special attention has been paid to the interfacial microstructure. It was found that a liquid phase formed during sintering between 890°C and 920°C and this promoted grain growth and densification. Both clean grain boundaries and boundaries containing an amorphous intergranular film, which was rich in Cu, have been observed. Both CuO and BaCuO2 were present as secondary phases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser deposition was used to deposit YBaCuO thin films on Yttria-stabilized Zirconia substrates, at substrate holder temperatures of 710-765 °C. We observed a transition from singlecrystalline to polycrystalline growth at a temperature of ∼750 °C. All films were highly c-axis oriented and had critical temperatures between 89.5 and 92 K. In the twinned singlecrystalline films, the lowest measured microwave surface resistance was 0.37 mΩ at 4.2 K and 21.5 GHz, and the highest critical current 5×106 A/cm2 at 77 K. The polycrystalline films had up to a factor of 50 higher surface resistance and a factor of 10 lower critical current. A meander line resonator made of a film on a LaAlO3 substrate, showed a microwave surface resistance of 5μΩ at 4.2 K and 2.5 GHz. © 1991.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sintering and densification of Y2BaCuO5 (Y-211) pellets made from powders with different characteristics have been investigated in the temperature range 1000-1140°C. A pellet made from powder containing Ba-rich secondary phases shows very early liquid-assisted sintering and densification and clear evidence of exaggerated grain growth. The melting of BaCuO2 and YBa2Cu3O7-δ (Y-123) secondary phases increases the rate of densification of Y-211 pellets made from other powders at temperatures above 1025-1030°C. All the liquid produced by the melting of the latter phases recrystallizes as intergranular layers of Y-123. These intergranular layers account for the darker appearance and for measurable electrical conductivities at room temperature of the pellets sintered at the higher temperatures. The development of exaggerated grain growth within a uniform fine-grained matrix opens the possibility of using controlled secondary recrystallization to obtain large single domains of Y-211, provided that the trapping of porosity can be avoided or minimized. © 1999 Elsevier Science S.A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructure of an artificial grain boundary in an YBa2Cu3O7-δ (YBCO) thin film grown on a (100)(110), [001]-tilt yttria-stabilized-zirconia (YSZ) bicrystal substrate has been studied using transmission electron microscopy (TEM). The orientation relationship between the YBCO film and the YSZ substrate was [001]YBCO∥[001]YSZ and [110]YBCO∥[100]YSZ for each half of the bicrystal film. However, the exact boundary geometry of the bicrystal substrate was not transferred to the film. The substrate boundary was straight while the film boundary was wavy. In several cases there was bending of the lattice confined within a distance of a few basal-plane lattice spacings from the boundary plane and microfaceting. No intergranular secondary phase was observed but about 25% of the boundary was covered by c-axis-tilted YBCO grains and a-axis-oriented grains, both of which were typically adjacent to CuO grains or surrounded by a thin Cu-rich amorphous layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Layers (about 60-100 μm thick) of almost pure BaCuO2 (BC1), as determined using X-ray diffractometry (XRD) and scanning electron microscopy (SEM), coat the surfaces of YBa2Cu3O7-x (Y123) samples partial melt processed using a single-zone vertical furnace. The actual Cu/Ba ratio of the BC1 phase is 1.2-1.3 as determined using energy dispersive X-ray spectrometry (EDS). The nominally BC1 phase displays an exsolution of BC1.5 or BC2 in the form of thin plates (about 50-100 nm thick) along {100}-type cleavage planes or facets. The exsolved phase also fills cracks within the BC1 layer that require it to be in a molten state at some stage of processing. The samples were influenced by Pt contamination from the supporting wire, which may have stabilised the BC1.5 phase. Many of the Y123 grains have the same morphology as the exsolution domains, and run nearly parallel to the thin plates of the exsolved phases, strongly indicating that Y123 nucleation took place at the interface between the BC1 and the BC1.5 or BC2 exsolved phases. The network of nearly parallel exsolved 'channels' provides a matrix and a mechanism through which a high degree of local texture can be initiated in the material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

YBCO thin films were fabricated by laser deposition, in situ on MgO substrates, using both O2 and N2O as process gas. Films with Tc above 90 K and jc of 106 A/cm2 at 77 K were grown in oxygen at a substrate temperature of 765 °C. Using N2O, the optimum substrate temperature was 745 °C, giving a Tc of 87 K. At lower temperatures, the films made in N2O had higher Tc (79 K) than the films made in oxygen (66 K). SEM and STM investigations of the film surfaces showed the films to consist of a comparatively smooth background surface and a distribution of larger particles. Both the particle size and the distribution density depended on the substrate temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electropolishing method has been developed for preparing sharp needles from polycrystalline YBa2Cu3O7-δ by modifying a recipe for TEM specimen preparation. The method is characterized by a polishing temperature of below 0°C, a non-acidic electrolyt and an even removal of the constituent phases. An approach was employed of combining I-V measurements for polishing process and microscopical observation of surface morphology in finding optimum polishing conditions. TEM evidenced that no preferential attack appeared to grain boundaries. X-ray diffractometry and electron diffraction implied that no change in oxygen content occurred during electropolishing. The sharpness of the tip was examined by field-ion microscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples of YBa2Cu3O7-y+20 mol% Y2BaCuO5, with thicknesses ranging between 50-250 μm, have been melt processed and rapidly quenched from temperatures between 985 and 1100°C by immersing them in liquid nitrogen. The phase composition and microstructures of these samples have been characterised using a combination of X-ray diffractometry, optical microscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy. The quenched melt of samples quenched from temperatures greater than 985°C appears relatively homogeneous but consists of Ba2Cu3Ox (BC1.5) and BaCu2O2 (BC2) regions. At about 985°C, BaCuO2 (BC1) crystallises from the melt and most of the BC1.5 decomposes into BC1 and CuO or into BC1 and BC2. The crystallisation of BC1 induces segregation of elements in the melt and this is very significant for the melt texturing of YBCO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructures of the quenched melts of samples of Y123 and Y123+15-20 mol% Y211 with PtO2 and CeO2 additives have been examined with optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectrometry (EDS) and X-ray Diffractometry (XRD). Significantly higher temperatures are required for the formation of dendritic or lamellar eutectic patterns throughout the samples with PtO2 and CeO2 additives as compared to samples without additives. The BaCuO2 (BCl) phase appears first in solid form and, instead of rapidly melting, is slowly dissolving or decomposing in the oxygen depleted melt. PtO2 and CeO2 additives slow down or shift to higher temperatures the dissolution or decomposition process of BCl. A larger fraction of BCl in solid form explains why samples with additives have higher viscosities and hence lower diffusivities than samples without additives. There is also a reduction in the Y solubility to about half the value in samples without additives. The mechanism that limits the Ostwald ripening of the Y211 particles is correlated to the morphology of the quenched partial melt. It is diffusion controlled for a finely mixed morphology and interface-controlled when the melt quenches into dendritic or lamellar eutectic patterns. The change in the morphology of the Y211 particles from blocky to acicular is related to an equivalent undercooling of the Y-Ba-Cu-O partial melt, particularly through the crystallization of BCl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fuel additive comprising one or more complex oxides having a nominal compn. as set out in formula (1): AxB1-yMyOn; wherein A is selected from one or more group III elements including the lanthanide elements or one or more divalent or monovalent cations; B is selected from one or more elements with at. no. 22 to 24, 40 to 42 and 72 to 75; M is selected from one or more elements with at. no. 25 to 30; x is defined as a no. where 0 < x ≤ l; y is defined as a no. where 0 ≤ y < 0.5. [on SciFinder(R)]