64 resultados para Miroir semi-transparent
Resumo:
Minimising catches of non-target animals in a trawl fishery reduces the impact on a marine community and may help to sustain the fishery resource in the long term. Hence the desirability for trawls that minimise impacts on non-target species while maintaining catches of target species. This study resulted from a need to further develop easily handled, semi-pelagic style trawls for Australia's Northern Fish Trawl Fishery. In November 1993 we compared catches from three differently rigged versions of a demersal wing trawl: one fished in a standard demersal configuration with its footrope on the sea bed, and two fished semi-pelagically, with their footropes raised to either 0.4-0.5 or 0.8-0.9 m above the sea bed. At two sites in the northeast Gulf of Carpentaria, each trawl type was used on the same combination of sites, grids within sites and times of day. Catches of the main target species (Lutjanus malabaricus and Lutjanus erythropterus) by the three trawl types were not significantly different. However, the mean catches of both these species and of other commercially important snappers, were highest in the semi-pelagic trawl raised 0.4-0.5 m above the sea bed. This increase could be due to a larger trawl spread or to the whole rig fishing higher in the water column. Of the 107 species of fishes analysed, 61 were caught in greater abundance in the demersal trawl. Seven species were caught more effectively in the semi-pelagic trawl with the footrope 0.4-0.5 m above the substrate; none was caught most effectively with the footrope set at 0.8-0.9 m. Epibenthic byproduct species (squid and Thenus orientalis), fish bycatch, sponges and other epibenthic invertebrates were also caught in lower numbers in the semi-pelagic trawls. The semi-pelagic trawls convincingly caught less (in both numbers and biomass) of the unwanted species which are normally discarded. Semi-pelagic fish trawls of the types tested would be suitable for Australia's Northern Fish Trawl Fishery and probably other demersal trawl fisheries that would benefit from the conservation of non-target epibenthic communities.
Resumo:
Hamstring strains in the Australian Football League (AFL) have a high incidence (15%) and recurrence rate (34%) with lateral hamstring injuries most common (83%). Retrospective studies have found significant muscle volume asymmetries ≤23 months post hamstring injury; however examination of the association between hamstring strains and muscle asymmetry has not been investigated prospectively. This study presents baseline data from a longitudinal study focusing on individual hamstring morphometry in uninjured and injured semi-elite AFL players.
Resumo:
This research provides information for providing the required seismic mitigation in building structures through the use of semi active and passive dampers. The Magneto-Rheological (MR) semi-active damper model was developed using control algorithms and integrated into seismically excited structures as a time domain function. Linear and nonlinear structure models are evaluated in real time scenarios. Research information can be used for the design and construction of earthquake safe buildings with optimally employed MR dampers and MR-passive damper combinations.
Resumo:
Diffusion in a composite slab consisting of a large number of layers provides an ideal prototype problem for developing and analysing two-scale modelling approaches for heterogeneous media. Numerous analytical techniques have been proposed for solving the transient diffusion equation in a one-dimensional composite slab consisting of an arbitrary number of layers. Most of these approaches, however, require the solution of a complex transcendental equation arising from a matrix determinant for the eigenvalues that is difficult to solve numerically for a large number of layers. To overcome this issue, in this paper, we present a semi-analytical method based on the Laplace transform and an orthogonal eigenfunction expansion. The proposed approach uses eigenvalues local to each layer that can be obtained either explicitly, or by solving simple transcendental equations. The semi-analytical solution is applicable to both perfect and imperfect contact at the interfaces between adjacent layers and either Dirichlet, Neumann or Robin boundary conditions at the ends of the slab. The solution approach is verified for several test cases and is shown to work well for a large number of layers. The work is concluded with an application to macroscopic modelling where the solution of a fine-scale multilayered medium consisting of two hundred layers is compared against an “up-scaled” variant of the same problem involving only ten layers.