230 resultados para Minorities in medicine
Resumo:
Sexual harassment of women in medicine in the Australian medical profession is a serious problem which presents substantial legal, ethical and cultural questions for the medical profession. Women have enforceable legal rights to gender equality and freedom from sexual harassment in the workplace. Both individual offenders and their employers face significant legal consequences for sexual harassment. Individual medical practitioners and employers need to understand their legal and ethical responsibilities in this context. This article analyses four areas of legal liability in every State and Territory which apply to individual offenders and employers: criminal law, discrimination law, civil law, and contract law. It also analyses ethical duties owed by doctors towards their colleagues under professional regulatory schemes. The analysis shows that individual doctors and their employers have clear legal and ethical obligations to prevent sexual harassment. On legal and ethical grounds, medical employers, professional colleges and associations, and regulators need to improve gender equality and professional culture in medicine. A five-step model for cultural change is proposed.
Resumo:
The world has experienced a large increase in the amount of available data. Therefore, it requires better and more specialized tools for data storage and retrieval and information privacy. Recently Electronic Health Record (EHR) Systems have emerged to fulfill this need in health systems. They play an important role in medicine by granting access to information that can be used in medical diagnosis. Traditional systems have a focus on the storage and retrieval of this information, usually leaving issues related to privacy in the background. Doctors and patients may have different objectives when using an EHR system: patients try to restrict sensible information in their medical records to avoid misuse information while doctors want to see as much information as possible to ensure a correct diagnosis. One solution to this dilemma is the Accountable e-Health model, an access protocol model based in the Information Accountability Protocol. In this model patients are warned when doctors access their restricted data. They also enable a non-restrictive access for authenticated doctors. In this work we use FluxMED, an EHR system, and augment it with aspects of the Information Accountability Protocol to address these issues. The Implementation of the Information Accountability Framework (IAF) in FluxMED provides ways for both patients and physicians to have their privacy and access needs achieved. Issues related to storage and data security are secured by FluxMED, which contains mechanisms to ensure security and data integrity. The effort required to develop a platform for the management of medical information is mitigated by the FluxMED's workflow-based architecture: the system is flexible enough to allow the type and amount of information being altered without the need to change in your source code.
Resumo:
Optical coherence tomography (OCT) has been applied for high resolution imaging of articular cartilage. However, the contribution of individual structural elements of cartilage on OCT signal has not been thoroughly studied. We hypothesize that both collagen and chondrocytes, essential structural components of cartilage, act as important light scatterers and that variation in their concentrations can be detected by OCT through changes in backscattering and attenuation. To evaluate this hypothesis, we established a controlled model system using agarose scaffolds embedded with variable collagen concentrations and chondrocyte densities. Using OCT, we measured the backscattering coefficient (µb) and total attenuation coefficient (µt) in these scaffolds. Along our hypothesis, light backscattering and attenuation in agarose were dependent on collagen concentration and chondrocyte density. Significant correlations were found between µt and chondrocyte density (ρ = 0.853, p < 0.001) and between µt and collagen concentration (ρ = 0.694, p < 0.001). µb correlated significantly with chondrocyte density (ρ = 0.504, p < 0.001) but not with collagen concentration (ρ = 0.103, p = 0.422) of the scaffold. Thus, quantitation of light backscattering and, especially, attenuation could be valuable when evaluating the integrity of soft tissues, such as articular cartilage with OCT.
Resumo:
Young females with mild hallux valgus (HV) have been identified as having an increased risk of first ray deformation. Little is known, however, about the biomechanical changes that might contribute to this increased risk. The purpose of this study was to compare kinetics changes during walking for mild HV subjects with high-heel-height shoes. Twelve female subjects (six with mild HV and six controls) participated in this study with heel height varying from 0 cm (barefoot) to 4.5 cm. Compared to healthy controls, patients had significantly higher peak pressure on the big toe area during barefoot walking. When the heel height increased, loading was transferred to medial side of the forefoot, and the big toe area suffered more impact compared to barefoot in mild HV. This study also demonstrated that the center of pressure (COP) inclines to medial side alteration after high-heeled shoes wearing. These findings indicate that mild HV people should be discouraged from wearing high-heeled shoes.
Resumo:
The purpose of this study was to compare kinematics and kinetics during walking for healthy subjects using unstable shoes with different designs. Ten subjects participated in this study, and foot biomechanical data during walking were quantified using motion analysis system and a force plate. Data were collected for unstable shoes condition after accommodation period of one week. With soft material added in the heel region, the peak impact force was effectively reduced when compared among similar shapes. In addition, the soft material added in the rocker bottom showed more to be in dorsiflexed position during the initial stance. The shoe with three rocker curves design reduced the contact area in the heel strike, which may result in increasing human body forward speed. Further studies shall be carried out after adapting to long periods of wearing unstable shoes.
Resumo:
The mechanical properties of arterial walls have long been recognized to play an essential role in the development and progression of cardiovascular disease (CVD). Early detection of variations in the elastic modulus of arteries would help in monitoring patients at high cardiovascular risk stratifying them according to risk. An in vivo, non-invasive, high resolution MR-phase-contrast based method for the estimation of the time-dependent elastic modulus of healthy arteries was developed, validated in vitro by means of a thin walled silicon rubber tube integrated into an existing MR-compatible flow simulator and used on healthy volunteers. A comparison of the elastic modulus of the silicon tube measured from the MRI-based technique with direct measurements confirmed the method's capability. The repeatability of the method was assessed. Viscoelastic and inertial effects characterizing the dynamic response of arteries in vivo emerged from the comparison of the pressure waveform and the area variation curve over a period. For all the volunteers who took part in the study the elastic modulus was found to be in the range 50-250 kPa, to increase during the rising part of the cycle, and to decrease with decreasing pressure during the downstroke of systole and subsequent diastole.
Resumo:
Atheromatous plaque rupture h the cause of the majority of strokes and heart attacks in the developed world. The role of calcium deposits and their contribution to plaque vulnerability are controversial. Some studies have suggested that calcified plaque tends to be more stable whereas others have suggested the opposite. This study uses a finite element model to evaluate the effect of calcium deposits on the stress within the fibrous cap by varying their location and size. Plaque fibrous cap, lipid pool and calcification were modeled as hyperelastic, Isotropic, (nearly) incompressible materials with different properties for large deformation analysis by assigning time-dependent pressure loading on the lumen wall. The stress and strain contours were illustrated for each condition for comparison. Von Mises stress only increases up to 1.5% when varying the location of calcification in the lipid pool distant to the fibrous cap. Calcification in the fibrous cap leads to a 43% increase of Von Mises stress when compared with that in the lipid pool. An increase of 100% of calcification area leads to a 15% stress increase in the fibrous cap. Calcification in the lipid pool does not increase fibrous cap stress when it is distant to the fibrous cap, whilst large areas of calcification close to or in the fibrous cap may lead to a high stress concentration within the fibrous cap, which may cause plaque rupture. This study highlights the application of a computational model on a simulation of clinical problems, and it may provide insights into the mechanism of plaque rupture.
Resumo:
Selecting an appropriate working correlation structure is pertinent to clustered data analysis using generalized estimating equations (GEE) because an inappropriate choice will lead to inefficient parameter estimation. We investigate the well-known criterion of QIC for selecting a working correlation Structure. and have found that performance of the QIC is deteriorated by a term that is theoretically independent of the correlation structures but has to be estimated with an error. This leads LIS to propose a correlation information criterion (CIC) that substantially improves the QIC performance. Extensive simulation studies indicate that the CIC has remarkable improvement in selecting the correct correlation structures. We also illustrate our findings using a data set from the Madras Longitudinal Schizophrenia Study.
Resumo:
Between-subject and within-subject variability is ubiquitous in biology and physiology and understanding and dealing with this is one of the biggest challenges in medicine. At the same time it is difficult to investigate this variability by experiments alone. A recent modelling and simulation approach, known as population of models (POM), allows this exploration to take place by building a mathematical model consisting of multiple parameter sets calibrated against experimental data. However, finding such sets within a high-dimensional parameter space of complex electrophysiological models is computationally challenging. By placing the POM approach within a statistical framework, we develop a novel and efficient algorithm based on sequential Monte Carlo (SMC). We compare the SMC approach with Latin hypercube sampling (LHS), a method commonly adopted in the literature for obtaining the POM, in terms of efficiency and output variability in the presence of a drug block through an in-depth investigation via the Beeler-Reuter cardiac electrophysiological model. We show improved efficiency via SMC and that it produces similar responses to LHS when making out-of-sample predictions in the presence of a simulated drug block.