481 resultados para Mining City


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the rise of ubiquitous computing in recent years, concepts of spatiality have become a significant topic of discussion in design and development of multimedia systems. This article investigates spatial practices at the intersection of youth, technology, and urban space in Seoul, and examines what the author calls ‘transyouth’: in the South Korean context, these people are between the ages of 18 and 24, situated on the delicate border between digital natives and immigrants in Prensky’s (2001) terms. In the first section, the article sets out the technosocial environment of contemporary Seoul. This is followed by a discussion of social networking processes derived from semi-structured interviews conducted in 2007-8 with Seoul transyouth about their ‘lived experiences of the city.’ Interviewees reported how they interact to play, work, and live with and within the city’s unique environment. The article develops a theme of how technosocial convergence (re)creates urban environments and argues for a need to consider such user-driven spatial recreation in designing cities as (ubiquitous) urban networks in recognition of its changing technosocial contours of connections. This is explored in three spaces of different scales: Cyworld as an online social networking space; cocoon housing – a form of individual residential space which is growing rapidly in many Korean cities – as a private living space; and u-City (ubiquitous City) as the future macro-space of Seoul.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical negotiation models are weak in supporting real-world business negotiations because these models often assume that the preference information of each negotiator is made public. Although parametric learning methods have been proposed for acquiring the preference information of negotiation opponents, these methods suffer from the strong assumptions about the specific utility function and negotiation mechanism employed by the opponents. Consequently, it is difficult to apply these learning methods to the heterogeneous negotiation agents participating in e‑marketplaces. This paper illustrates the design, development, and evaluation of a nonparametric negotiation knowledge discovery method which is underpinned by the well-known Bayesian learning paradigm. According to our empirical testing, the novel knowledge discovery method can speed up the negotiation processes while maintaining negotiation effectiveness. To the best of our knowledge, this is the first nonparametric negotiation knowledge discovery method developed and evaluated in the context of multi-issue bargaining over e‑marketplaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a big challenge to clearly identify the boundary between positive and negative streams. Several attempts have used negative feedback to solve this challenge; however, there are two issues for using negative relevance feedback to improve the effectiveness of information filtering. The first one is how to select constructive negative samples in order to reduce the space of negative documents. The second issue is how to decide noisy extracted features that should be updated based on the selected negative samples. This paper proposes a pattern mining based approach to select some offenders from the negative documents, where an offender can be used to reduce the side effects of noisy features. It also classifies extracted features (i.e., terms) into three categories: positive specific terms, general terms, and negative specific terms. In this way, multiple revising strategies can be used to update extracted features. An iterative learning algorithm is also proposed to implement this approach on RCV1, and substantial experiments show that the proposed approach achieves encouraging performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dealing with the ever-growing information overload in the Internet, Recommender Systems are widely used online to suggest potential customers item they may like or find useful. Collaborative Filtering is the most popular techniques for Recommender Systems which collects opinions from customers in the form of ratings on items, services or service providers. In addition to the customer rating about a service provider, there is also a good number of online customer feedback information available over the Internet as customer reviews, comments, newsgroups post, discussion forums or blogs which is collectively called user generated contents. This information can be used to generate the public reputation of the service providers’. To do this, data mining techniques, specially recently emerged opinion mining could be a useful tool. In this paper we present a state of the art review of Opinion Mining from online customer feedback. We critically evaluate the existing work and expose cutting edge area of interest in opinion mining. We also classify the approaches taken by different researchers into several categories and sub-categories. Each of those steps is analyzed with their strength and limitations in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An information filtering (IF) system monitors an incoming document stream to find the documents that match the information needs specified by the user profiles. To learn to use the user profiles effectively is one of the most challenging tasks when developing an IF system. With the document selection criteria better defined based on the users’ needs, filtering large streams of information can be more efficient and effective. To learn the user profiles, term-based approaches have been widely used in the IF community because of their simplicity and directness. Term-based approaches are relatively well established. However, these approaches have problems when dealing with polysemy and synonymy, which often lead to an information overload problem. Recently, pattern-based approaches (or Pattern Taxonomy Models (PTM) [160]) have been proposed for IF by the data mining community. These approaches are better at capturing sematic information and have shown encouraging results for improving the effectiveness of the IF system. On the other hand, pattern discovery from large data streams is not computationally efficient. Also, these approaches had to deal with low frequency pattern issues. The measures used by the data mining technique (for example, “support” and “confidences”) to learn the profile have turned out to be not suitable for filtering. They can lead to a mismatch problem. This thesis uses the rough set-based reasoning (term-based) and pattern mining approach as a unified framework for information filtering to overcome the aforementioned problems. This system consists of two stages - topic filtering and pattern mining stages. The topic filtering stage is intended to minimize information overloading by filtering out the most likely irrelevant information based on the user profiles. A novel user-profiles learning method and a theoretical model of the threshold setting have been developed by using rough set decision theory. The second stage (pattern mining) aims at solving the problem of the information mismatch. This stage is precision-oriented. A new document-ranking function has been derived by exploiting the patterns in the pattern taxonomy. The most likely relevant documents were assigned higher scores by the ranking function. Because there is a relatively small amount of documents left after the first stage, the computational cost is markedly reduced; at the same time, pattern discoveries yield more accurate results. The overall performance of the system was improved significantly. The new two-stage information filtering model has been evaluated by extensive experiments. Tests were based on the well-known IR bench-marking processes, using the latest version of the Reuters dataset, namely, the Reuters Corpus Volume 1 (RCV1). The performance of the new two-stage model was compared with both the term-based and data mining-based IF models. The results demonstrate that the proposed information filtering system outperforms significantly the other IF systems, such as the traditional Rocchio IF model, the state-of-the-art term-based models, including the BM25, Support Vector Machines (SVM), and Pattern Taxonomy Model (PTM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wide range of contributing factors and circumstances surrounding crashes on road curves suggest that no single intervention can prevent these crashes. This paper presents a novel methodology, based on data mining techniques, to identify contributing factors and the relationship between them. It identifies contributing factors that influence the risk of a crash. Incident records, described using free text, from a large insurance company were analysed with rough set theory. Rough set theory was used to discover dependencies among data, and reasons using the vague, uncertain and imprecise information that characterised the insurance dataset. The results show that male drivers, who are between 50 and 59 years old, driving during evening peak hours are involved with a collision, had a lowest crash risk. Drivers between 25 and 29 years old, driving from around midnight to 6 am and in a new car has the highest risk. The analysis of the most significant contributing factors on curves suggests that drivers with driving experience of 25 to 42 years, who are driving a new vehicle have the highest crash cost risk, characterised by the vehicle running off the road and hitting a tree. This research complements existing statistically based tools approach to analyse road crashes. Our data mining approach is supported with proven theory and will allow road safety practitioners to effectively understand the dependencies between contributing factors and the crash type with the view to designing tailored countermeasures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the global knowledge economy, knowledge-intensive industries and knowledge workers are extensively seen as the primary factors to improve the welfare and competitiveness of cities. To attract and retain such industries and workers, cities produce knowledge-based urban development strategies, where such strategising is also an important development mechanism for cities and their economies. This paper investigates Brisbane’s knowledge-based urban development strategies that support generation, attraction, and retention of investment and talent. The paper provides a clear understanding on the policy frameworks, and relevant applications of Brisbane’s knowledge-based urban development experience in becoming a prosperous knowledge city.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the past three decades cities in the Asia-Pacific region have undergone massive transformations, characterised by rapid population growth and urbanisation. The rapid pace of globalisation and economic restructuring has resulted in these cities receiving the full impact of urbanisation pressures. In attempting to ease these pressures, major cities have advocated growth management approaches that give particular interest to sustainable urbanization and emphasise compact and optimum development of urban forms. This paper seeks to provide an insight into sustainable urbanisation practice, particularly on the promotion of compact urbanisation within Asia-Pacific’s fastest growing regions. The finding shows that within the context of resource constraints, sustainable urbanisation has been a key factor in the adoption of urban growth management initiatives promoting viable use of scarce resources for urban expansion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite all attempts to prevent fraud, it continues to be a major threat to industry and government. Traditionally, organizations have focused on fraud prevention rather than detection, to combat fraud. In this paper we present a role mining inspired approach to represent user behaviour in Enterprise Resource Planning (ERP) systems, primarily aimed at detecting opportunities to commit fraud or potentially suspicious activities. We have adapted an approach which uses set theory to create transaction profiles based on analysis of user activity records. Based on these transaction profiles, we propose a set of (1) anomaly types to detect potentially suspicious user behaviour and (2) scenarios to identify inadequate segregation of duties in an ERP environment. In addition, we present two algorithms to construct a directed acyclic graph to represent relationships between transaction profiles. Experiments were conducted using a real dataset obtained from a teaching environment and a demonstration dataset, both using SAP R/3, presently the most predominant ERP system. The results of this empirical research demonstrate the effectiveness of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manchester, Manchester University Press, 2002, xvi + 256 pp., £14.99 (pbk), ISBN 0719058880

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article reviews the book "The Media City: Media, Architecture and Urban Space," by Scott McQuire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Probes into the consumer culture in the postmodern city through a survey of a population that recently moved into refurbished homes in downtown Manchester, England. Attraction to the middle class of culturally based urban regeneration; Cultural consumption and lifestyle; Sociology of contemporary cultural change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to propose and demonstrate the relevance of marketing systems, notably the process of product management and innovation, to urban development challenges. Design/methodology/approach – A macromarketing perspective is adopted to construe the city as a product and begin the application of the innovation process to urban management, following the steps commonly proposed for successful innovation in product management. An example of the application of the initial new product development steps of idea generation and opportunity identification is presented. Findings – The innovation process provides guidelines and checkpoints that enable corporations to improve the success rate of their development initiatives. Cities, like corporations, need to innovate in order to maintain their image and functionality, to provide a myriad benefits to their stakeholders and, thereby, to survive and grow. The example here shows how the preliminary NPD steps of idea generation and opportunity identification enrich the process of identifying and analysing new industry opportunities for a city. Practical implications – By conceptualising the city as a multifaceted product, the disciplined planning and evaluation processes pertinent to NPD success become relevant and helpful to practitioners responsible for urban planning, urban development and change. Originality/value – The paper shows how pertinent concepts and processes from marketing can be effectively applied to urban planning and economic development initiatives.