376 resultados para Mathematical Modelling
Resumo:
The driving task requires sustained attention during prolonged periods, and can be performed in highly predictable or repetitive environments. Such conditions could create drowsiness or hypovigilance and impair the ability to react to critical events. Identifying vigilance decrement in monotonous conditions has been a major subject of research, but no research to date has attempted to predict this vigilance decrement. This pilot study aims to show that vigilance decrements due to monotonous tasks can be predicted through mathematical modelling. A short vigilance task sensitive to short periods of lapses of vigilance called Sustained Attention to Response Task is used to assess participants’ performance. This task models the driver’s ability to cope with unpredicted events by performing the expected action. A Hidden Markov Model (HMM) is proposed to predict participants’ hypovigilance. Driver’s vigilance evolution is modelled as a hidden state and is correlated to an observable variable: the participant’s reactions time. This experiment shows that the monotony of the task can lead to an important vigilance decline in less than five minutes. This impairment can be predicted four minutes in advance with an 86% accuracy using HMMs. This experiment showed that mathematical models such as HMM can efficiently predict hypovigilance through surrogate measures. The presented model could result in the development of an in-vehicle device that detects driver hypovigilance in advance and warn the driver accordingly, thus offering the potential to enhance road safety and prevent road crashes.
Resumo:
Heart disease is attributed as the highest cause of death in the world. Although this could be alleviated by heart transplantation, there is a chronic shortage of donor hearts and so mechanical solutions are being considered. Currently, many Ventricular Assist Devices (VADs) are being developed worldwide in an effort to increase life expectancy and quality of life for end stage heart failure patients. Current pre-clinical testing methods for VADs involve laboratory testing using Mock Circulation Loops (MCLs), and in vivo testing in animal models. The research and development of highly accurate MCLs is vital to the continuous improvement of VAD performance. The first objective of this study was to develop and validate a mathematical model of a MCL. This model could then be used in the design and construction of a variable compliance chamber to improve the performance of an existing MCL as well as form the basis for a new miniaturised MCL. An extensive review of literature was carried out on MCLs and mathematical modelling of their function. A mathematical model of a MCL was then created in the MATLAB/SIMULINK environment. This model included variable features such as resistance, fluid inertia and volumes (resulting from the pipe lengths and diameters); compliance of Windkessel chambers, atria and ventricles; density of both fluid and compressed air applied to the system; gravitational effects on vertical columns of fluid; and accurately modelled actuators controlling the ventricle contraction. This model was then validated using the physical properties and pressure and flow traces produced from a previously developed MCL. A variable compliance chamber was designed to reproduce parameters determined by the mathematical model. The function of the variability was achieved by controlling the transmural pressure across a diaphragm to alter the compliance of the system. An initial prototype was tested in a previously developed MCL, and a variable level of arterial compliance was successfully produced; however, the complete range of compliance values required for accurate physiological representation was not able to be produced with this initial design. The mathematical model was then used to design a smaller physical mock circulation loop, with the tubing sizes adjusted to produce accurate pressure and flow traces whilst having an appropriate frequency response characteristic. The development of the mathematical model greatly assisted the general design of an in vitro cardiovascular device test rig, while the variable compliance chamber allowed simple and real-time manipulation of MCL compliance to allow accurate transition between a variety of physiological conditions. The newly developed MCL produced an accurate design of a mechanical representation of the human circulatory system for in vitro cardiovascular device testing and education purposes. The continued improvement of VAD test rigs is essential if VAD design is to improve, and hence improve quality of life and life expectancy for heart failure patients.
Resumo:
In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.
Resumo:
Industrial applications of the simulated-moving-bed (SMB) chromatographic technology have brought an emergent demand to improve the SMB process operation for higher efficiency and better robustness. Improved process modelling and more-efficient model computation will pave a path to meet this demand. However, the SMB unit operation exhibits complex dynamics, leading to challenges in SMB process modelling and model computation. One of the significant problems is how to quickly obtain the steady state of an SMB process model, as process metrics at the steady state are critical for process design and real-time control. The conventional computation method, which solves the process model cycle by cycle and takes the solution only when a cyclic steady state is reached after a certain number of switching, is computationally expensive. Adopting the concept of quasi-envelope (QE), this work treats the SMB operation as a pseudo-oscillatory process because of its large number of continuous switching. Then, an innovative QE computation scheme is developed to quickly obtain the steady state solution of an SMB model for any arbitrary initial condition. The QE computation scheme allows larger steps to be taken for predicting the slow change of the starting state within each switching. Incorporating with the wavelet-based technique, this scheme is demonstrated to be effective and efficient for an SMB sugar separation process. Moreover, investigations are also carried out on when the computation scheme should be activated and how the convergence of the scheme is affected by a variable stepsize.
Resumo:
In teaching introductory economics there has been a tendency to put a lot of emphasis on imparting abstract models and technical skills to students (Stilwell, 2005; Voss, Blais, Greens, & Ahwesh, 1986). This model building approach has the merit of preparing the grounding for students 10 pursue further studies in economics. However, in a business degree with only a small proportion of students majoring in economics, such an approach tend to alienate the majority of students transiting from high school in to university. Surveys in Europe and Australia found that students complained about the lack of relevance of economics courses to the real world and the over-reliance of abstract mathematical modelling (Kirman, 2001; Lewis and Norris, 1997; Siegfried & Round, 2000). BSB112 Economics 1 is one of the eight faculty core units in the Faculty of Business at QUT, with over 1000 students in each semester. In semester I 2008, a new approach to teaching this unit was designed aiming to achieve three inter-related objectives: (1) to provide business students with a first insight into economic thinking and language, (2) to integrate economic analysis with current Australian social, environmental and political issues, and (3) to cater for students with a wide range of academic needs. Strategies used to achieve these objectives included writing up a new text which departs from traditional economics textbooks in important ways, integrating students' cultures in teaching and learning activities, and devising a new assessment format to encourage development of research skills and applications rather than reproduction of factual knowledge. This paper will document the strategies used in this teaching innovation, present quantitative and qualitative evidence to evaluate this new approach and suggest ways of further improvement.
Resumo:
Monotony has been identified as a contributing factor to road crashes. Drivers’ ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks, such as driving on Australian rural roads, many of which are monotonous by nature. Highway design in particular attempts to reduce the driver’s task to a merely lane-keeping one. Such a task provides little stimulation and is monotonous, thus affecting the driver’s attention which is no longer directed towards the road. Inattention contributes to crashes, especially for professional drivers. Monotony has been studied mainly from the endogenous perspective (for instance through sleep deprivation) without taking into account the influence of the task itself (repetitiveness) or the surrounding environment. The aim and novelty of this thesis is to develop a methodology (mathematical framework) able to predict driver lapses of vigilance under monotonous environments in real time, using endogenous and exogenous data collected from the driver, the vehicle and the environment. Existing approaches have tended to neglect the specificity of task monotony, leaving the question of the existence of a “monotonous state” unanswered. Furthermore the issue of detecting vigilance decrement before it occurs (predictions) has not been investigated in the literature, let alone in real time. A multidisciplinary approach is necessary to explain how vigilance evolves in monotonous conditions. Such an approach needs to draw on psychology, physiology, road safety, computer science and mathematics. The systemic approach proposed in this study is unique with its predictive dimension and allows us to define, in real time, the impacts of monotony on the driver’s ability to drive. Such methodology is based on mathematical models integrating data available in vehicles to the vigilance state of the driver during a monotonous driving task in various environments. The model integrates different data measuring driver’s endogenous and exogenous factors (related to the driver, the vehicle and the surrounding environment). Electroencephalography (EEG) is used to measure driver vigilance since it has been shown to be the most reliable and real time methodology to assess vigilance level. There are a variety of mathematical models suitable to provide a framework for predictions however, to find the most accurate model, a collection of mathematical models were trained in this thesis and the most reliable was found. The methodology developed in this research is first applied to a theoretically sound measure of sustained attention called Sustained Attention Response to Task (SART) as adapted by Michael (2010), Michael and Meuter (2006, 2007). This experiment induced impairments due to monotony during a vigilance task. Analyses performed in this thesis confirm and extend findings from Michael (2010) that monotony leads to an important vigilance impairment independent of fatigue. This thesis is also the first to show that monotony changes the dynamics of vigilance evolution and tends to create a “monotonous state” characterised by reduced vigilance. Personality traits such as being a low sensation seeker can mitigate this vigilance decrement. It is also evident that lapses in vigilance can be predicted accurately with Bayesian modelling and Neural Networks. This framework was then applied to the driving task by designing a simulated monotonous driving task. The design of such task requires multidisciplinary knowledge and involved psychologist Rebecca Michael. Monotony was varied through both the road design and the road environment variables. This experiment demonstrated that road monotony can lead to driving impairment. Particularly monotonous road scenery was shown to have the most impact compared to monotonous road design. Next, this study identified a variety of surrogate measures that are correlated with vigilance levels obtained from the EEG. Such vigilance states can be predicted with these surrogate measures. This means that vigilance decrement can be detected in a car without the use of an EEG device. Amongst the different mathematical models tested in this thesis, only Neural Networks predicted the vigilance levels accurately. The results of both these experiments provide valuable information about the methodology to predict vigilance decrement. Such an issue is quite complex and requires modelling that can adapt to highly inter-individual differences. Only Neural Networks proved accurate in both studies, suggesting that these models are the most likely to be accurate when used on real roads or for further research on vigilance modelling. This research provides a better understanding of the driving task under monotonous conditions. Results demonstrate that mathematical modelling can be used to determine the driver’s vigilance state when driving using surrogate measures identified during this study. This research has opened up avenues for future research and could result in the development of an in-vehicle device predicting driver vigilance decrement. Such a device could contribute to a reduction in crashes and therefore improve road safety.
Resumo:
In this work, we investigate and compare the Maxwell–Stefan and Nernst–Planck equations for modeling multicomponent charge transport in liquid electrolytes. Specifically, we consider charge transport in the Li+/I−/I3−/ACN ternary electrolyte originally found in dye-sensitized solar cells. We employ molecular dynamics simulations to obtain the Maxwell–Stefan diffusivities for this electrolyte. These simulated diffusion coefficients are used in a multicomponent charge transport model based on the Maxwell– Stefan equations, and this is compared to a Nernst–Planck based model which employs binary diffusion coefficients sourced from the literature. We show that significant differences between the electrolyte concentrations at electrode interfaces, as predicted by the Maxwell–Stefan and Nernst–Planck models, can occur. We find that these differences are driven by a pressure term that appears in the Maxwell–Stefan equations. We also investigate what effects the Maxwell–Stefan diffusivities have on the simulated charge transport. By incorporating binary diffusivities found in the literature into the Maxwell–Stefan framework, we show that the simulated transient concentration profiles depend on the diffusivities; however, the simulated equilibrium profiles remain unaffected.
Resumo:
The driving task requires sustained attention during prolonged periods, and can be performed in highly predictable or repetitive environments. Such conditions could create hypovigilance and impair performance towards critical events. Identifying such impairment in monotonous conditions has been a major subject of research, but no research to date has attempted to predict it in real-time. This pilot study aims to show that performance decrements due to monotonous tasks can be predicted through mathematical modelling taking into account sensation seeking levels. A short vigilance task sensitive to short periods of lapses of vigilance called Sustained Attention to Response Task is used to assess participants‟ performance. The framework for prediction developed on this task could be extended to a monotonous driving task. A Hidden Markov Model (HMM) is proposed to predict participants‟ lapses in alertness. Driver‟s vigilance evolution is modelled as a hidden state and is correlated to a surrogate measure: the participant‟s reactions time. This experiment shows that the monotony of the task can lead to an important decline in performance in less than five minutes. This impairment can be predicted four minutes in advance with an 86% accuracy using HMMs. This experiment showed that mathematical models such as HMM can efficiently predict hypovigilance through surrogate measures. The presented model could result in the development of an in-vehicle device that detects driver hypovigilance in advance and warn the driver accordingly, thus offering the potential to enhance road safety and prevent road crashes.
Resumo:
This paper examines the ground-water flow problem associated with the injection and recovery of certain corrosive fluids into mineral bearing rock. The aim is to dissolve the minerals in situ, and then recover them in solution. In general, it is not possible to recover all the injected fluid, which is of concern economically and environmentally. However, a new strategy is proposed here, that allows all the leaching fluid to be recovered. A mathematical model of the situation is solved approximately using an asymptotic solution, and exactly using a boundary integral approach. Solutions are shown for two-dimensional flow, which is of some practical interest as it is achievable in old mine tunnels, for example.
Resumo:
A model for drug diffusion from a spherical polymeric drug delivery device is considered. The model contains two key features. The first is that solvent diffuses into the polymer, which then transitions from a glassy to a rubbery state. The interface between the two states of polymer is modelled as a moving boundary, whose speed is governed by a kinetic law; the same moving boundary problem arises in the one-phase limit of a Stefan problem with kinetic undercooling. The second feature is that drug diffuses only through the rubbery region, with a nonlinear diffusion coefficient that depends on the concentration of solvent. We analyse the model using both formal asymptotics and numerical computation, the latter by applying a front-fixing scheme with a finite volume method. Previous results are extended and comparisons are made with linear models that work well under certain parameter regimes. Finally, a model for a multi-layered drug delivery device is suggested, which allows for more flexible control of drug release.
Resumo:
We develop a new analytical solution for a reactive transport model that describes the steady-state distribution of oxygen subject to diffusive transport and nonlinear uptake in a sphere. This model was originally reported by Lin (Journal of Theoretical Biology, 1976 v60, pp449–457) to represent the distribution of oxygen inside a cell and has since been studied extensively by both the numerical analysis and formal analysis communities. Here we extend these previous studies by deriving an analytical solution to a generalized reaction-diffusion equation that encompasses Lin’s model as a particular case. We evaluate the solution for the parameter combinations presented by Lin and show that the new solutions are identical to a grid-independent numerical approximation.
Resumo:
Increasing resistance of rabbits to myxomatosis in Australia has led to the exploration of Rabbit Haemorrhagic Disease, also called Rabbit Calicivirus Disease (RCD) as a possible control agent. While the initial spread of RCD in Australia resulted in widespread rabbit mortality in affected areas, the possible population dynamic effects of RCD and myxomatosis operating within the same system have not been properly explored. Here we present early mathematical modelling examining the interaction between the two diseases. In this study we use a deterministic compartment model, based on the classical SIR model in infectious disease modelling. We consider, here, only a single strain of myxomatosis and RCD and neglect latent periods. We also include logistic population growth, with the inclusion of seasonal birth rates. We assume there is no cross-immunity due to either disease. The mathematical model allows for the possibility of both diseases to be simultaneously present in an individual, although results are also presented for the case where co infection is not possible, since co-infection is thought to be rare and questions exist as to whether it can occur. The simulation results of this investigation show that it is a crucial issue and should be part of future field studies. A single simultaneous outbreak of RCD and myxomatosis was simulated, while ignoring natural births and deaths, appropriate for a short timescale of 20 days. Simultaneous outbreaks may be more common in Queensland. For the case where co-infection is not possible we find that the simultaneous presence of myxomatosis in the population suppresses the prevalence of RCD, compared to an outbreak of RCD with no outbreak of myxomatosis, and thus leads to a less effective control of the population. The reason for this is that infection with myxomatosis removes potentially susceptible rabbits from the possibility of infection with RCD (like a vaccination effect). We found that the reduction in the maximum prevalence of RCD was approximately 30% for an initial prevalence of 20% of myxomatosis, for the case where there was no simultaneous outbreak of myxomatosis, but the peak prevalence was only 15% when there was a simultaneous outbreak of myxomatosis. However, this maximum reduction will depend on other parameter values chosen. When co-infection is allowed then this suppression effect does occur but to a lesser degree. This is because the rabbits infected with both diseases reduces the prevalence of myxomatosis. We also simulated multiple outbreaks over a longer timescale of 10 years, including natural population growth rates, with seasonal birth rates and density dependent(logistic) death rates. This shows how both diseases interact with each other and with population growth. Here we obtain sustained outbreaks occurring approximately every two years for the case of a simultaneous outbreak of both diseases but without simultaneous co-infection, with the prevalence varying from 0.1 to 0.5. Without myxomatosis present then the simulation predicts RCD dies out quickly without further introduction from elsewhere. With the possibility of simultaneous co-infection of rabbits, sustained outbreaks are possible but then the outbreaks are less severe and more frequent (approximately yearly). While further model development is needed, our work to date suggests that: 1) the diseases are likely to interact via their impacts on rabbit abundance levels, and 2) introduction of RCD can suppress myxomatosis prevalence. We recommend that further modelling in conjunction with field studies be carried out to further investigate how these two diseases interact in the population.