123 resultados para Marine observation
Resumo:
Ever since sodium fluorescein (‘fluorescein’ [FL]) was first used to investigate the ocular surface over a century ago, the term ‘staining’ has been taken to mean the presence of ocular surface fluorescence [1]. This term has not been necessarily taken to infer any particular mechanism of causation, and indeed, can be attributed to a variety of possible aetiologies [2]. In recent times, there has been considerable interest in a form of ocular surface fluorescence seen in association with the use of certain combinations of soft contact lenses and multipurpose solutions. The first clinical account of this phenomenon was reported by Jones et al. [3], which was followed by a more formal investigation by the same author in 2002 [4]. Jones et al described this appearance as a ‘classic solution-based toxicity reaction’. Subsequently, this appearance has come to be known as ‘solution-induced corneal staining’ or more recently by the acronym ‘SICS’ [5]. The term SICS is potentially problematic in that from a cell biology point of view, there is an inference that ‘staining’ means the entry of a dye into corneal epithelial cells. Morgan and Maldonado-Codina [2] noted there was no foundation of solid scientific literature underpinning our understanding of the true basic causative mechanisms of this phenomenon; since that time, further work has been published in this field [6] and [7] but questions still remain about the precise aetiology of this phenomenon...
Resumo:
Gas phase peroxyl radicals are central to our chemical understanding of combustion and atmospheric processes and are typically characterized by strong absorption in the UV (lambda(max) approximate to 240 nm). The analogous maximum absorption feature for arylperoxyl radicals is predicted to shift to the visible but has not previously been characterized nor have any photoproducts arising from this transition been identified. Here we describe the controlled synthesis and isolation in vacuo of an array of charge-substituted phenylperoxyl radicals at room temperature, including the 4-(N,N,N-trimethylammonium)methyl phenylperoxyl radical cation (4-Me3N[+]CH2-C6H4OO center dot), using linear ion-trap mass spectrometry. Photodissociation mass spectra obtained at wavelengths ranging from 310 to 500 nm reveal two major photoproduct channels corresponding to homolysis of aryl-OO and arylO-O bonds resulting in loss of O-2 and O, respectively. Combining the photodissociation yields across this spectral window produces a broad (FWHM approximate to 60 nm) but clearly resolved feature centered at lambda(max) = 403 nm (3.08 eV). The influence of the charge-tag identity and its proximity to the radical site are investigated and demonstrate no effect on the identity of the two dominant photoproduct channels. Electronic structure calculations have located the vertical (B) over tilde <- (X) over tilde transition of these substituted phenylperoxyl radicals within the experimental uncertainty and further predict the analogous transition for unsubstituted phenylperoxyl radical (C6H5OO center dot) to be 457 nm (2.71 eV), nearly 45 nm shorter than previous estimates and in good agreement with recent computational values.
Resumo:
Samples of sea water contain phytoplankton taxa in varying amounts, and marine scientists are interested in the relative abundance of each taxa. Their relative biomass can be ascertained indirectly by measuring the quantity of various pigments using high performance liquid chromatography. However, the conversion from pigment to taxa is mathematically non trivial as it is a positive matrix factorisation problem where both matrices are unknown beyond the level of initial estimates. The prior information on the pigment to taxa conversion matrix is used to give the problem a unique solution. An iteration of two non-negative least squares algorithms gives satisfactory results. Some sample analysis of data indicates prospects for this type of analysis. An alternative more computationally intensive approach using Bayesian methods is discussed.
Resumo:
In this paper, we address the control design problem of positioning of over-actuated marine vehicles with control allocation. The proposed design is based on a combined position and velocity loops in a multi-variable anti-windup implementation together with a control allocation mapping. The vehicle modelling is considered with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. We derive analytical tuning rules based on requirements of closed-loop stability and performance. The anti- windup implementation of the controller is obtained by mapping the actuator-force constraint set into a constraint set for the generalized forces. This approach ensures that actuation capacity is not violated by constraining the generalized control forces; thus, the control allocation is simplified since it can be formulated as an unconstrained problem. The mapping can also be modified on-line based on actuator availability to provide actuator-failure accommodation. We provide a proof of the closed-loop stability and illustrate the performance using simulation scenarios for an open-frame underwater vehicle.
Resumo:
The Surface Ocean Aerosol Production (SOAP) study was undertaken in February/March 2012 in the biologically active waters of the Chatham Rise, NZ. Aerosol hygroscopicity and volatility were examined with a volatility hygroscopicity tandem differential mobility analyser. These observations confirm results from other hygroscopicity-based studies that the dominant fraction of the observed remote marine particles were non-sea salt sulfates. Further observations are required to clarify the influences of seawater composition, meteorology and analysis techniques seasonally across different ocean basins.
Resumo:
Marine craft (surface vessels, underwater vehicles, and offshore rigs) perform operations that require tight motion control. During the past three decades, there has been an increasing demand for higher accuracy and reliability of marinecraft motion control systems. Today, these control systems are an enabling factor for single and multicraft marine operations. This chapter provides an overview of the main characteristics and design aspects of motion control systems for marine craft. In particular, we discuss the architecture of the control system, the functionality of its main components, the characteristics of environmental disturbances, control objectives, and essential aspects of modeling and motion control design.
Resumo:
The fact that nature provides specific enzymes to selectively remove superoxide (O2.−) from aerobic organisms, namely, the superoxide dismutase enzymes,1 has led to the suggestion that this radical ion may cause the oxidative damage associated with degradative disease and aging.2 Intriguingly, however, superoxide itself is relatively unreactive toward most cellular components, which suggests that dismutase enzymes may ultimately protect the cell against more pernicious oxidants formed from superoxide. As such, there is increasing interest in the endogenous chemistry of superoxide and the pathways by which it might beget more reactive oxygen species. Protonation of superoxide to form the hydroperoxyl radical (HOO.) and dismutation of the same species to hydrogen peroxide (HOOH), with subsequent metal-catalyzed reduction to the hydroxyl radical (HO.), are well-characterized processes in which both the HOO. and HO. radicals are significantly more reactive than their common progenitor.2 Recent examples, however, have also linked superoxide to the putative production of singlet oxygen3 and ozone,4, 5 although the definitive characterization of these chemistries in the cellular milieu has proved challenging
Resumo:
Dynamic positioning of marine craft refers to the use of the propulsion system to regulate the vessel position and heading. This type of motion control is commonly used in the offshore industry for surface vessels, and it is also used for some underwater vehicles. In this paper, we use a port-Hamiltonian framework to design a novel nonlinear set-point-regulation controller with integral action. The controller handles input saturation and guarantees internal stability, rejection of unknown constant disturbances, and (integral-)input-to-state stability.
Resumo:
The motion response of marine structures in waves can be studied using finite-dimensional linear-time-invariant approximating models. These models, obtained using system identification with data computed by hydrodynamic codes, find application in offshore training simulators, hardware-in-the-loop simulators for positioning control testing, and also in initial designs of wave-energy conversion devices. Different proposals have appeared in the literature to address the identification problem in both time and frequency domains, and recent work has highlighted the superiority of the frequency-domain methods. This paper summarises practical frequency-domain estimation algorithms that use constraints on model structure and parameters to refine the search of approximating parametric models. Practical issues associated with the identification are discussed, including the influence of radiation model accuracy in force-to-motion models, which are usually the ultimate modelling objective. The illustration examples in the paper are obtained using a freely available MATLAB toolbox developed by the authors, which implements the estimation algorithms described.
Resumo:
This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms associated with fluid memory effects are replaced by an alternative state-space representation, the parameters of which are obtained by using realization theory. The mathematical model established is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.
Resumo:
In extreme weather conditions, thrusters on ships and rigs may be subject to severe thrust losses caused by ventilation and in-and-out-of-water events. When a thruster ventilates, air is sucked down from the surface and into the propeller. In more severe cases, parts of or even the whole propeller can be out of the water. These losses vary rapidly with time and cause increased wear and tear in addition to reduced thruster performance. In this paper, a thrust allocation strategy is proposed to reduce the effects of thrust losses and to reduce the possibility of multiple ventilation events. This thrust allocation strategy is named antispin thrust allocation, based on the analogous behavior of antispin wheel control of cars. The proposed thrust allocation strategy is important for improving the life span of the propulsion system and the accuracy of positioning for vessels conducting station keeping in terms of dynamic positioning or thruster-assisted position mooring. Application of this strategy can result in an increase of operational time and, thus, increased profitability. The performance of the proposed allocation strategy is demonstrated with experiments on a model ship.
Resumo:
This paper addresses the problem of joint identification of infinite-frequency added mass and fluid memory models of marine structures from finite frequency data. This problem is relevant for cases where the code used to compute the hydrodynamic coefficients of the marine structure does not give the infinite-frequency added mass. This case is typical of codes based on 2D-potential theory since most 3D-potential-theory codes solve the boundary value associated with the infinite frequency. The method proposed in this paper presents a simpler alternative approach to other methods previously presented in the literature. The advantage of the proposed method is that the same identification procedure can be used to identify the fluid-memory models with or without having access to the infinite-frequency added mass coefficient. Therefore, it provides an extension that puts the two identification problems into the same framework. The method also exploits the constraints related to relative degree and low-frequency asymptotic values of the hydrodynamic coefficients derived from the physics of the problem, which are used as prior information to refine the obtained models.
Resumo:
The dynamics describing the motion response of a marine structure in waves can be represented within a linear framework by the Cummins Equation. This equation contains a convolution term that represents the component of the radiation forces associated with fluid memory effects. Several methods have been proposed in the literature for the identification of parametric models to approximate and replace this convolution term. This replacement can facilitate the model implementation in simulators and the analysis of motion control designs. Some of the reported identification methods consider the problem in the time domain while other methods consider the problem in the frequency domain. This paper compares the application of these identification methods. The comparison is based not only on the quality of the estimated models, but also on the ease of implementation, ease of use, and the flexibility of the identification method to incorporate prior information related to the model being identified. To illustrate the main points arising from the comparison, a particular example based on the coupled vertical motion of a modern containership vessel is presented.
Resumo:
Time-domain models of marine structures based on frequency domain data are usually built upon the Cummins equation. This type of model is a vector integro-differential equation which involves convolution terms. These convolution terms are not convenient for analysis and design of motion control systems. In addition, these models are not efficient with respect to simulation time, and ease of implementation in standard simulation packages. For these reasons, different methods have been proposed in the literature as approximate alternative representations of the convolutions. Because the convolution is a linear operation, different approaches can be followed to obtain an approximately equivalent linear system in the form of either transfer function or state-space models. This process involves the use of system identification, and several options are available depending on how the identification problem is posed. This raises the question whether one method is better than the others. This paper therefore has three objectives. The first objective is to revisit some of the methods for replacing the convolutions, which have been reported in different areas of analysis of marine systems: hydrodynamics, wave energy conversion, and motion control systems. The second objective is to compare the different methods in terms of complexity and performance. For this purpose, a model for the response in the vertical plane of a modern containership is considered. The third objective is to describe the implementation of the resulting model in the standard simulation environment Matlab/Simulink.
Resumo:
The motion of marine vessels has traditionally been studied using two different approaches: manoeuvring and seakeeping. These two approaches use different reference frames and coordinate systems to describe the motion. This paper derives the kinematic models that characterize the transformation of motion variables (position, velocity, accelerations) and forces between the different coordinate systems used in these theories. The derivations hereby presented are done in terms of the formalism adopted in robotics. The advantage of this formulation is the use of matrix notation and operations. As an application, the transformation of linear equations of motion used in seakeeping into body-fixed coordinates is considered for both zero and forward speed.