85 resultados para MOLECULAR-WEIGHT HEPARIN
Resumo:
Mass spectrometric analysis of the low-molecular weight (LMW) range of the serum/plasma proteome is revealing the existence of large numbers of previously unknown peptides and protein fragments predicted to be derived from low- abundance proteins. This raises the question of why such low abundance molecules would be retained at detectable levels in the circulation, instead of being rapidly cleared and excreted. Theoretical models of biomarker production and association with serum carrier proteins have been developed to elucidate the mechanisms governing biomarker half-life in the bloodstream. These models predict that the vast majority of LMW biomarkers exist in association with circulating high molecular mass carrier proteins. Moreover, the total serum/ plasma concentration of the biomarker is largely determined by the clearance rate of the carrier protein, not the free-phase biomarker clearance itself. These predictions have been verified experimentally using molecular mass fractionation of human serum before mass spectrometry sequence analysis. These principles have profound implications for biomarker discovery and measurement.
Resumo:
In this paper, we have synthesized two novel diketopyrrolopyrrole (DPP) based donor-acceptor (D-A) copolymers poly{3,6-dithiophene-2-yl-2,5-di(2-octyl)- pyrrolo[3,4-c]pyrrole-1,4-dione-alt-1,5-bis(dodecyloxy)naphthalene} (PDPPT-NAP) and poly{3,6-dithiophene-2-yl-2,5-di(2-butyldecyl)-pyrrolo[3,4-c]pyrrole-1,4- dione-alt-2-dodecyl-2H-benzo[d][1,2,3]triazole} (PDPPT-BTRZ) via direct arylation organometallic coupling. Both copolymers contain a common electron withdrawing DPP building block which is combined with electron donating alkoxy naphthalene and electron withdrawing alkyl-triazole comonomers. The number average molecular weight (Mn) determined by gel permeation chromatography (GPC) for polymer PDPPT-NAP is around 23 400 g mol-1 whereas for polymer PDPPT-BTRZ it is 18 600 g mol-1. The solid state absorption spectra of these copolymers show a wide range of absorption from 400 nm to 1000 nm with optical band gaps calculated from absorption cut off values in the range of 1.45-1.30 eV. The HOMO values determined for PDPPT-NAP and PDPPT-BTRZ copolymers from photoelectron spectroscopy in air (PESA) data are 5.15 eV and 5.25 eV respectively. These polymers exhibit promising p-channel and ambipolar behaviour when used as an active layer in organic thin-film transistor (OTFT) devices. The highest hole mobility measured for polymer PDPPT-NAP is around 0.0046 cm2 V-1 s-1 whereas the best ambipolar performance was calculated for PDPPT-BTRZ with a hole and electron mobility of 0.01 cm2 V-1 s-1 and 0.006 cm2 V-1 s-1.
Resumo:
The synthesis and characterisation of 2,5-bis(5′-hexyl-[2,2′- bithiophen]-5-yl)pyridine (Th4PY) and its use as a blue emitter in organic light emitting diodes (OLEDs) is reported. Th4PY was synthesised in high yield using a straightforward Suzuki coupling route with commercially available starting materials. As Th4PY is both soluble and has low molecular weight, blue OLEDs were fabricated using both spin-coating and vacuum deposition thin film processing techniques to study the effect of processing on device performance. OLED devices using a spin-coated layer consisting of 4′,4′′- tris(N-carbazolyl)triphenylamine (TCTA) and 2-(4-biphenylyl)-5-(4-tert- butylphenyl)-1,3,4-oxadiazole (PBD) as a host matrix together with Th4PY as emitter exhibited highly efficient sky-blue emission with a low turn-on voltage of 3V, a maximum brightness close to 15000cdm-2 at 8V, and a maximum luminous efficiency of 7.4cdA -1 (6.3lmW -1) with CIE coordinates of x≤0.212, y≤0.320. The device performance characteristics are compared using various matrices and processing techniques. The promising sky-blue OLED performance, solution processability, and ambient stability make Th4PY a promising blue emitter for application in OLEDs.
Resumo:
New push-pull copolymers based on thiophene (donor) and benzothiadiazole (acceptor) units, poly[4,7-bis(3-dodecylthiophene-2-yl) benzothiadiazole-co- thiophene] (PT3B1) and poly[4,7-bis(3-dodecylthiophene-2-yl) benzothiadiazole-co-benzothiadiazole] (PT2B2), are designed and synthesized via Stille and Suzuki coupling routes respectively. Gel permeation chromatography shows the number average molecular weights are 31100 and 8400 g mol-1 for the two polymers, respectively. Both polymers have shown absorption throughout a wide range of the UV-vis region, from 300 to 650 nm. A significant red shift of the absorption edge is observed in thin films compared to solution of the copolymers; the optical band gap is in the range of 1.7 to 1.8 eV. Cyclic voltammetry indicates reversible oxidation and reduction processes with HOMO energy levels calculated to be in the range of 5.2 to 5.4 eV. Upon testing both materials for organic field-effect transistors (OFETs), PT3B1 showed a hole mobility of 6.1 × 10-4 cm2 V-1 s -1, while PT2B2 did not show any field effect transport. Both copolymers displayed a photovoltaic response when combined with a methanofullerene as an electron acceptor. The best performance was achieved when the copolymer PT3B1 was blended with [70]PCBM in a 1:4 ratio, exhibiting a short-circuit current of 7.27 mA cm-2, an open circuit voltage of 0.85 V, and a fill factor of 41% yielding a power conversion efficiency of 2.54% under simulated air mass (AM) 1.5 global (1.5 G) illumination conditions (100 mW cm-2). Similar devices utilizing PT2B2 in place of PT3B1 demonstrated reduced performance with a short-circuit current of 4.8 mA cm -2, an open circuit voltage of 0.73 V, and a fill factor of 30% resulting in a power conversion efficiency of roughly 1.06%.
Resumo:
Organic compounds in Australian coal seam gas produced water (CSG water) are poorly understood despite their environmental contamination potential. In this study, the presence of some organic substances is identified from government-held CSG water-quality data from the Bowen and Surat Basins, Queensland. These records revealed the presence of polycyclic aromatic hydrocarbons (PAHs) in 27% of samples of CSG water from the Walloon Coal Measures at concentrations <1 µg/L, and it is likely these compounds leached from in situ coals. PAHs identified from wells include naphthalene, phenanthrene, chrysene and dibenz[a,h]anthracene. In addition, the likelihood of coal-derived organic compounds leaching to groundwater is assessed by undertaking toxicity leaching experiments using coal rank and water chemistry as variables. These tests suggest higher molecular weight PAHs (including benzo[a]pyrene) leach from higher rank coals, whereas lower molecular weight PAHs leach at greater concentrations from lower rank coal. Some of the identified organic compounds have carcinogenic or health risk potential, but they are unlikely to be acutely toxic at the observed concentrations which are almost negligible (largely due to the hydrophobicity of such compounds). Hence, this study will be useful to practitioners assessing CSG water related environmental and health risk.
Resumo:
Background. Escherichia coli O25b:H4-ST131 represents a predominant clone of multidrug-resistant uropathogens currently circulating worldwide in hospitals and the community. Urinary tract infections (UTIs) caused by E. coli ST131 are typically associated with limited treatment options and are often recurrent. Methods. Using established mouse models of acute and chronic UTI, we mapped the pathogenic trajectory of the reference E. coli ST131 UTI isolate, strain EC958. Results. We demonstrated that E. coli EC958 can invade bladder epithelial cells and form intracellular bacterial communities early during acute UTI. Moreover, E. coli EC958 persisted in the bladder and established chronic UTI. Prophylactic antibiotic administration failed to prevent E. coli EC958–mediated UTI. However, 1 oral dose of a small-molecular-weight compound that inhibits FimH, the type 1 fimbriae adhesin, significantly reduced bacterial colonization of the bladder and prevented acute UTI. Treatment of chronically infected mice with the same FimH inhibitor lowered their bladder bacterial burden by >1000-fold. Conclusions. In this study, we provide novel insight into the pathogenic mechanisms used by the globally disseminated E. coli ST131 clone during acute and chronic UTI and establish the potential of FimH inhibitors as an alternative treatment against multidrug-resistant E. coli.
Resumo:
Human cytochrome P450 (P450) enzymes are involved in the oxidation of natural products found in foods, beverages, and tobacco products and their catalytic activities can also be modulated by components of the materials. The microsomal activation of aflatoxin B1 to the exo-3,9-epoxide is stimulated by flavone and 7,8-benzoflavone, and attenuated by the flavonoid naringenin, a major component of grapefruit. P4502E1 has been demonstrated to play a potentially major role in the activation of a number of very low-molecular weight cancer suspects, including ethyl carbamate (urethan), which is present in alcoholic beverages and particularly stone brandies. The enzyme (P4502E1) is also known to be inducible by ethanol. Tobacco contains a large number of potential carcinogens. In human liver microsomes a significant role for P4501A2 can be demonstrated in the activation of cigarette smoke condensate. Some of the genotoxicity may be due to arylamines. P4501A2 is also inhibited by components of crude cigarette smoke condensate. The tobacco-specific nitrosamines are activated by a number of P450 enzymes. Of those known to be present in human liver, P4501A2, 2A6, and 2E1 can activate these nitrosamines to genotoxic products.
Resumo:
The presence of theta-class glutathione S-transferase (GST) in marmoset monkey liver cytosol was investigated. An anti-peptide antibody targeted against the C-terminus of rGSTT1 reacted with a single band in marmoset liver cytosol that corresponded to a molecular weight of 28 kDa. The intensity of the immunoreactive band was not affected by treatment of marmoset monkeys with 2,3,7,8-tetrachlorodibenzo-p-dioxin, phenobarbitone, rifampicin or clofibric acid. Similarly, activity towards methyl chloride (MC) was unaffected by these treatments. However, GST activity towards 1,2-epoxy3-(p- nitrophenoxy)-propane (EPNP) was increased in marmosets treated with phenobarbitone (2.6-fold) and rifampicin (2.6-fold), activity towards dichloromethane (DCM) was increased by 50% after treatment of marmosets with clofibric acid, and activity towards 1-chloro-2,4-dinitrobenzene (CDNB) was raised slightly (30-42% increases) after treatment with phenobarbitone, rifampicin or clofibric acid. Compared with humans, marmoset liver cytosol GST activity towards DCM was 18-fold higher, activity towards MC was 7 times higher and activity towards CDNB was 4 times higher. Further, EPNP activity was clearly detectable in marmoset liver cytosol samples, but was undetectable in human samples. Immunoreactive marmoset GST was partially purified by affinity chromatography using hexylglutathione-Sepharose and Orange A resin. The interaction of immunoreactive marmoset GST was similar to that found previously for rat and human GSTT1, suggesting that this protein is also a theta class GST. However, unlike rat GSTT1, the marmoset enzyme was not the major catalyst of EPNP conjugation. Instead, immunoreactivity was closely associated with activity towards MC. In conclusion, these results provide evidence for the presence of theta-class GST in the marmoset monkey orthologous to rGSTT1 and hGSTT1.
Resumo:
Methylene chloride (dichloromethane) is widely used as a solvent for stripping of paint, as industrial cleaning agent, for coating of pills in the pharmaceutical industry, and in the decaffeination of coffee. There is “sufficient evidence for the carcinogenicity” of methylene chloride in animals and “inadequate evidence for its carcinogenity in humans”, according to IARC (IARC 1987; CEC 1990).
Resumo:
Dendrimers have potential for delivering chemotherapeutic drugs to solid tumours via the enhanced permeation and retention (EPR) effect. The impact of conjugation of hydrophobic anticancer drugs to hydrophilic PEGylated dendrimer surfaces, however, has not been fully investigated. The current study has therefore characterised the effect on dendrimer disposition of conjugating α-carboxyl protected methotrexate (MTX) to a series of PEGylated 3H-labelled poly-L-lysine dendrimers ranging in size from generation 3 (G3) to 5 (G5) in rats. Dendrimers contained 50% surface PEG and 50% surface MTX. Conjugation of MTX generally increased plasma clearance when compared to conjugation with PEG alone. Conversely, increasing generation reduced clearance, increased metabolic stability and reduced renal elimination of the administered radiolabel. For constructs with molecular weights >20 kDa increasing the molecular weight of conjugated PEG also reduced clearance and enhanced metabolic stability but had only a minimal effect on renal elimination. Tissue distribution studies revealed retention of MTX conjugated smaller (G3-G4) PEG570 dendrimers (or their metabolic products) in the kidneys. In contrast, the larger G5 dendrimer was concentrated more in the liver and spleen. The G5 PEG1100 dendrimer was also shown to accumulate in solid Walker 256 and HT1080 tumours and comparative disposition data in both rats (1 to 2% dose/g in tumour) and mice (11% dose/g in tumour) are presented. The results of this study further illustrate the potential utility of biodegradable PEGylated poly-L-lysine dendrimers as long circulating vectors for the delivery and tumour-targeting of hydrophobic drugs.
Resumo:
Recent data highlighted the association between penetration of antiretrovirals in the central nervous system (CNS) and neurocognitive impairment in HIVpositive patients. Existing antiretrovirals have been ranked according to a score of neuropenetration, which was shown to be a predictor of anti-HIVactivity in the CNS and improvement of neurocognitive disorders [1]. Main factors affecting drug penetration are known to be protein binding, lipophilicity and molecular weight [2]. Moreover, active translation by membrane transporters (such as p-glycoprotein) could be a key mechanism of passage [3]. The use of raltegravir (RGV), a novel antiretroviral drug targeted to inhibit the HIV preintegrase complex, is increasing worldwide due to its efficacy and tolerability. However, penetration of RGV in the CNS has not been yet elucidated. In fact, prediction of RGV neuropenetration according to molecular characteristics is controversial. Intermediate protein binding (83%) and large volume of distribution (273 l) could suggest a high distribution beyond extracellular spaces [4]. On the contrary, low lipophilicity (oil/water partition coefficient at pH 7.4 of 2.80) and intermediate molecular weight (482.51 Da) suggest a limited diffusion. Furthermore, in-vitro studies suggest that RGV is substrate of p-glycoprotein, although this efflux pump has not been identified to significantly affect plasma pharmacokinetics [5]. In any case, no data concerning RGV passage into cerebrospinal fluid of animals or humans have yet been published.
Resumo:
Purpose The majority of cancer patients will receive radiotherapy (RT), therefore, investigations into advances of this modality are important. Conventional RT dose intensities are limited by adverse responses in normal tissues and a primary goal is to ameliorate adverse normal tissue effects. The aim of these experiments is to further our understanding regarding the mechanism of radioprotection by the DNA minor groove binder, methylproamine, in a cellular context at the DNA level. Materials and methods We used immunocytochemical methods to measure the accumulation of phosphorylated H2AX (γH2AX) foci following ionizing radiation (IR) in patient-derived lymphoblastoid cells exposed to methylproamine. Furthermore, we performed pulsed field gel electrophoresis DNA damage and repair assays to directly interrogate the action of methylproamine on DNA in irradiated cells. Results We found that methylproamine-treated cells had fewer γH2AX foci after IR compared to untreated cells. Also, the presence of methylproamine decreased the amount of lower molecular weight DNA entering the gel as shown by the pulsed field gel electrophoresis assay. Conclusions These results suggest that methylproamine acts by preventing the formation of DNA double-strand breaks (dsbs) and support the hypothesis that radioprotection by methylproamine is mediated, at least in part, by decreasing initial DNA damage.
Resumo:
Particulates with specific sizes and characteristics can induce potent immune responses by promoting antigen uptake of appropriate immuno-stimulatory cell types. Magnetite (Fe3O4) nanoparticles have shown many potential bioapplications due to their biocompatibility and special characteristics. Here, superparamagnetic Fe3O4 nanoparticles (SPIONs) with high magnetization value (70emug-1) were stabilized with trisodium citrate and successfully conjugated with a model antigen (ovalbumin, OVA) via N,N'-carbonyldiimidazole (CDI) mediated reaction, to achieve a maximum conjugation capacity at approximately 13μgμm-2. It was shown that different mechanisms governed the interactions between the OVA molecules and magnetite nanoparticles at different pH conditions. We evaluated as-synthesized SPION against commercially available magnetite nanoparticles. The cytotoxicity of these nanoparticles was investigated using mammalian cells. The reported CDI-mediated reaction can be considered as a potential approach in conjugating biomolecules onto magnetite or other biodegradable nanoparticles for vaccine delivery.
Resumo:
Genomes of 82 Acinetobacter baumannii global clones 1 (GC1) and 2 (GC2) isolates were sequenced and different forms of the locus predicted to direct synthesis of the outer core (OC) of the lipooligosaccharide were identified. OCL1 was in all GC2 genomes, whereas GC1 isolates carried OCL1, OCL3 or a new locus, OCL5. Three mutants in which an insertion sequence (ISAba1 or ISAba23) interrupted OCL1 were identified. Isolates with OCL1 intact produced only lipooligosaccharide, while the mutants produced lipooligosaccharide of reduced molecular weight. Thus, the assignment of the OC locus as that responsible for the synthesis of the OC is correct.
Resumo:
A silk protein, fibroin, was isolated from the cocoons of the domesticated silkworm (Bombyx mori) and cast into membranes to serve as freestanding templates for tissue-engineered corneal cell constructs to be used in ocular surface reconstruction. In this study, we sought to enhance the attachment and proliferation of corneal epithelial cells by increasing the permeability of the fibroin membranes and the topographic roughness of their surface. By mixing the fibroin solution with poly(ethylene glycol) (PEG) of molecular weight 300 Da, membranes were produced with increased permeability and with topographic patterns generated on their surface. In order to enhance their mechanical stability, some PEG-treated membranes were also crosslinked with genipin. The resulting membranes were thoroughly characterized and compared to the non-treated membranes. The PEG-treated membranes were similar in tensile strength to the non-treated ones, but their elastic modulus was higher and elongation lower, indicating enhanced rigidity. The crosslinking with genipin did not induce a significant improvement in mechanical properties. In cultures of a human-derived corneal epithelial cell line (HCE-T), the PEG treatment of the substratum did not improve the attachment of cells and it enhanced only slightly the cell proliferation in the longer term. Likewise, primary cultures of human limbal epithelial cells grew equally well on both non-treated and PEG-treated membranes, and the stratification of cultures was consistently improved in the presence of an underlying culture of irradiated 3T3 feeder cells, irrespectively of PEG-treatment. Nevertheless, the cultures grown on the PEG-treated membranes in the presence of feeder cells did display a higher nuclear-to-cytoplasmic ratio suggesting a more proliferative phenotype. We concluded that while the treatment with PEG had a significant effect on some structural properties of the B. mori silk fibroin (BMSF) membranes, there were minimal gains in the performance of these materials as a substratum for corneal epithelial cell growth. The reduced mechanical stability of freestanding PEG-treated membranes makes them a less viable choice than the non-treated membranes.