123 resultados para MATRIX METALLOPROTEINASE-2


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Members of the matrix metalloproteinase (MMP) family of proteases are required for the degradation of the basement membrane and extracellular matrix in both normal and pathological conditions. In vitro, MT1-MMP (MMP-14, membrane type-1-MMP) expression is higher in more invasive human breast cancer (HBC) cell lines, whilst in vivo its expression has been associated with the stroma surrounding breast tumours. MMP-1 (interstitial collagenase) has been associated with MDA-MB-231 invasion in vitro, while MMP-3 (stromelysin-1) has been localised around invasive cells of breast tumours in vivo. As MMPs are not stored intracellularly, the ability to localise their expression to their cells of origin is difficult. Methods We utilised the unique in situ-reverse transcription-polymerase chain reaction (IS-RT-PCR) methodology to localise the in vitro and in vivo gene expression of MT1-MMP, MMP-1 and MMP-3 in human breast cancer. In vitro, MMP induction was examined in the MDA-MB-231 and MCF-7 HBC cell lines following exposure to Concanavalin A (Con A). In vivo, we examined their expression in archival paraffin embedded xenografts derived from a range of HBC cell lines of varied invasive and metastatic potential. Mouse xenografts are heterogenous, containing neoplastic human parenchyma with mouse stroma and vasculature and provide a reproducible in vivo model system correlated to the human disease state. Results In vitro, exposure to Con A increased MT1-MMP gene expression in MDA-MB-231 cells and decreased MT1-MMP gene expression in MCF-7 cells. MMP-1 and MMP-3 gene expression remained unchanged in both cell lines. In vivo, stromal cells recruited into each xenograft demonstrated differences in localised levels of MMP gene expression. Specifically, MDA-MB-231, MDA-MB-435 and Hs578T HBC cell lines are able to influence MMP gene expression in the surrounding stroma. Conclusion We have demonstrated the applicability and sensitivity of IS-RT-PCR for the examination of MMP gene expression both in vitro and in vivo. Induction of MMP gene expression in both the epithelial tumour cells and surrounding stromal cells is associated with increased metastatic potential. Our data demonstrate the contribution of the stroma to epithelial MMP gene expression, and highlight the complexity of the role of MMPs in the stromal-epithelial interactions within breast carcinoma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite reports confirming cell-cycle dependent gene expression and a number of studies describing specific circumstances in which β-actin is also regulated, the mRNA for β-actin remains a widely used housekeeping gene internal control. Utilizing differential reverse transcriptase-polymerase chain reaction (RT-PCR), we report here the dose-dependent inhibition of β-actin by matrigel. This was detected by comparison to the very moderate inhibition of the target gene, membrane type-1 matrix metalloproteinase (MT1-MMP), with results independently confirmed by similar findings on MT1-MMP expression using competitive RT-PCR. Furthermore, RT-PCR of the housekeeping gene 18 Svedberg Units (S) rRNA demonstrated excellent consistency, reproducibility and non-regulation by a matrigel treatment. We conclude that β-actin is highly regulated by matrigel and therefore unsuitable as an internal control in this treatment. Hence, these findings suggest that researchers have a responsibility to ensure that the housekeeping gene of choice is not regulated in their specific application, as such regulation may dramatically affect the accuracy of their results. This study reinforces the necessity for minimally regulated housekeeping genes such as 18S rRNA, and the superiority of competitive templates as internal controls for quantitative applications of RT-PCR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

IL-17 is believed to be important for protection against extracellular pathogens, where clearance is dependent on neutrophil recruitment and local activation of epithelial cell defences. However, the role of IL-17 in protection against intracellular pathogens such as Chlamydia is less clear. We have compared (i) the course of natural genital tract C. muridarum infection, (ii) the development of oviduct pathology and (iii) the development of vaccine-induced immunity against infection in wild type (WT) BALB/c and IL-17 knockout mice (IL-17-/-) to determine if IL-17-mediated immunity is implicated in the development of infection-induced pathology and/or protection. Both the magnitude and duration of genital infection was significantly reduced in IL-17-/- mice compared to BALB/c. Similarly, hydrosalpinx was also greatly reduced in IL-17-/- mice and this correlated with reduced neutrophil and macrophage infiltration of oviduct tissues. Matrix metalloproteinase (MMP) 9 and MMP2 were increased in WT oviducts compared to IL-17-/- animals at day 7 post-infection. In contrast, oviducts from IL-17-/- mice contained higher MMP9 and MMP2 at day 21. Infection also elicited higher levels of Chlamydia-neutralizing antibody in serum of IL-17-/- mice than WT mice. Following intranasal immunization with C. muridarum Major Outer Membrane Protein (MOMP) and cholera toxin plus CpG adjuvants, significantly higher levels of chlamydial MOMP-specific IgG and IgA were found in serum and vaginal washes of IL-17-/- mice. T cell proliferation and IFNγ production by splenocytes was greater in WT animals following in vitro re-stimulation, however vaccination was only effective at reducing infection in WT, not IL-17-/- mice. Intranasal or transcutaneous immunization protected WT but not IL-17-/- mice against hydrosalpinx development. Our data show that in the absence of IL-17, the severity of C. muridarum genital infection and associated oviduct pathology are significantly attenuated, however neither infection or pathology can be reduced further by vaccination protocols that effectively protect WT mice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The in situ-reverse transcription-polymerase chain reaction (IS-RT-PCR) is a method that allows the direct localisation of gene expression. The method utilises the dual buffer mediated activity of the enzyme rTth DNA polymerase enabling both reverse transcription and DNA amplification. Labelled nucleoside triphosphates allow the site of expression to be labelled, rather than the PCR primers themselves, giving a more accurate localisation of transcript expression and decreased background than standard in situ hybridisation (ISH) assays. The MDA-MB-231 human breast carcinoma (HBC) cell line was assayed via the IS-RT-PCR technique, using primers encoding MT-MMP (membrane-type matrix metalloproteinase) and human β-actin. Our results clearly indicate baseline expression of MT-MMP in the relatively invasive MDA-MB-231 cell line at a signal intensity similar to the housekeeping gene β-actin, and results following induction with Concanavalin A (Con A) are consistent with our previous results obtained via Northern blotting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose the progressive mechanical expansion of cell-derived tissue analogues as a novel, growth-based approach to in vitro tissue engineering. The prevailing approach to producing tissue in vitro is to culture cells in an exogenous “scaffold” that provides a basic structure and mechanical support. This necessarily pre-defines the final size of the implantable material, and specific signals must be provided to stimulate appropriate cell growth, differentiation and matrix formation. In contrast, surgical skin expansion, driven by increments of stretch, produces increasing quantities of tissue without trauma or inflammation. This suggests that connective tissue cells have the innate ability to produce growth in response to elevated tension. We posit that this capacity is maintained in vitro, and that order-of-magnitude growth may be similarly attained in self-assembling cultures of cells and their own extracellular matrix. The hypothesis that growth of connective tissue analogues can be induced by mechanical expansion in vitro may be divided into three components: (1) tension stimulates cell proliferation and extracellular matrix synthesis; (2) the corresponding volume increase will relax the tension imparted by a fixed displacement; (3) the repeated application of static stretch will produce sustained growth and a tissue structure adapted to the tensile loading. Connective tissues exist in a state of residual tension, which is actively maintained by resident cells such as fibroblasts. Studies in vitro and in vivo have demonstrated that cellular survival, reproduction, and matrix synthesis and degradation are regulated by the mechanical environment. Order-of-magnitude increases in both bone and skin volume have been achieved clinically through staged expansion protocols, demonstrating that tension-driven growth can be sustained over prolonged periods. Furthermore, cell-derived tissue analogues have demonstrated mechanically advantageous structural adaptation in response to applied loading. Together, these data suggest that a program of incremental stretch constitutes an appealing way to replicate tissue growth in cell culture, by harnessing the constituent cells’ innate mechanical responsiveness. In addition to offering a platform to study the growth and structural adaptation of connective tissues, tension-driven growth presents a novel approach to in vitro tissue engineering. Because the supporting structure is secreted and organised by the cells themselves, growth is not restricted by a “scaffold” of fixed size. This also minimises potential adverse reactions to exogenous materials upon implantation. Most importantly, we posit that the growth induced by progressive stretch will allow substantial volumes of connective tissue to be produced from relatively small initial cell numbers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In vitro analyses of basement membrane invasiveness employing Matrigel (a murine tumor extract rich in basement membrane components) have been performed on human breast cancer model systems. Constitutive invasiveness of different human breast cancer (HBC) cell lines has been examined as well as regulation by steroid hormones, growth factors, and oncogenes. Carcinoma cells exhibiting a mesenchymal-like phenotype (vimentin expression, lack of cell border associated uvomorulin) show dramatically increased motility, invasiveness, and metastatic potential in nude mice. These findings support the hypothesis that epithelial to mesenchymal transition (EMT)-like events may be instrumental in the metastatic progression of human breast cancer. The MCF-7 subline MCF-7ADR appears to have undergone such a transition. The importance of such a transition may be reflected in the emergence of vimentin expression as an indicator of poor prognosis in HBC. Matrix degradation and laminin recognition are highlighted as potential targets for antimetastatic therapy, and analyses of laminin attachment and the matrix metalloproteinase (MMP) family in HBC cell lines are summarized. Matrigel-based assays have proved useful in the study of the molecular mechanisms of basement membrane invasiveness, their regulation in HBC cells, and their potential as targets for antimetastatic therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The orphan nuclear receptor liver receptor homologue-1 (LRH-1) has roles in the development, cholesterol and bile acid homeostasis, and steroidogenesis. It also enhances proliferation and cell cycle progression of cancer cells. In breast cancer, LRH-1 expression is associated with invasive breast cancer; positively correlates with ERα status and aromatase activity; and promotes oestrogen-dependent cell proliferation. However, the mechanism of action of LRH-1 in breast cancer epithelial cells is still not clear. By silencing or over-expressing LRH-1 in ER-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells, we have demonstrated that LRH-1 promotes motility and cell invasiveness. Similar effects were observed in the non-tumourigenic mammary epithelial cell line, MCF-10A. Remodelling of the actin cytoskeleton and E-cadherin cleavage was observed with LRH-1 over-expression, contributing to increased migratory and invasive properties. Additionally, in LRH-1 over-expressing cells, the truncation of the 120 kDa E-cadherin to the inactive 97 kDa form was observed. These post-translational modifications in E-cadherin may be associated with LRH-1-dependent changes to matrix metalloproteinase 9 expression. These findings suggest a new role of LRH-1 in promoting migration and invasion in breast cancer, independent of oestrogen sensitivity. Therefore, LRH-1 may represent a new target for breast cancer therapeutics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The human galectin-3 is a galactoside-binding protein of 31 kDa which functions as a receptor for glycoproteins containing poly N-acetyllactosamine side chains and as a substrate for matrix metalloproteinases-2 and -9. We studied its expression by flow cytofluorimetry, Western, Northern and Southern analyses, in five cultured human breast carcinoma cell lines previously characterized as non-tumorigenic, poorly metastatic or metastatic in nude mice. The expression of galectin-3 correlated with the reported tumorigenicity of the cells. The introduction of recombinant galectin-3 into the null expressing non-tumorigenic BT-549 cells resulted in the acquisition of anchorage-independent growth properties in alland tumorigenicity in 3/4 sense transfected cell crones. The data indicate a relationship between galectin-3 expression and malignancy of human breast carcinoma cell lines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soluble endoglin is an anti-angiogenic protein that is released from the placenta and contributes to both maternal endothelial dysfunction and the clinical features of severe preeclampsia. The mechanism through which soluble endoglin is released from the placenta is currently unknown; however, recent work in colorectal cancer identified matrix metalloproteinase 14 (MMP-14) as the cleavage protease of endoglin. To determine whether this is also the mechanism responsible for soluble endoglin release in preeclampsia, we investigated the expression of MMP-14 within the placenta and the effects of its inhibition on soluble endoglin release. Placentas were obtained from severe, early onset preeclamptic pregnancies (n = 8) and gestationally matched preterm controls (n = 8). MMP-14 was predominately localized to the syncytiotrophoblast. Results from a proximity ligation assay showed protein interactions between endogenous MMP-14 and endoglin within the preeclamptic placenta. To demonstrate that this interaction produces soluble endoglin, we treated trophoblastic BeWo cells with either a broad-spectrum MMP inhibitor (GM6001) or MMP-14 siRNA. Both treatments produced a decrease in soluble endoglin (P ≤ 0.05). Treatment of mice bearing BeWo xenografts with GM6001 decreased circulating soluble endoglin levels in mouse serum (P ≤ 0.05). These findings indicate that MMP-14 is the likely cleavage protease of endoglin in the setting of preeclampsia. This approach provides a novel method for the development of potential therapeutics to reduce circulating soluble endoglin and ameliorate the clinical features of severe preeclampsia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The proinflammatory cytokine IL-17 has an important role in pathogenesis of several inflammatory diseases. In immune-mediated joint diseases, IL-17 can induce secretion of other proinflammatory cytokines such as IL-1, IL-6 and TNF, as well as matrix metalloproteinase enzymes, leading to inflammation, cartilage breakdown, osteoclastogenesis and bone erosion. In animal models of inflammatory arthritis, mice deficient in IL-17 are less susceptible to development of disease. The list of IL-17-secreting cells is rapidly growing, and mast cells have been suggested to be a dominant source of IL-17 in inflammatory joint disease. However, many other innate sources of IL-17 have been described in both inflammatory and autoinflammatory conditions, raising questions as to the role of mast cells in orchestrating joint inflammation. This article will critically assess the contribution of mast cells and other cell types to IL-17 production in the inflammatory milieu associated with inflammatory arthritis, understanding of which could facilitate targeted therapeutic approaches. © 2013 Macmillan Publishers Limited. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantification of pyridoxal-5´-phosphate (PLP) in biological samples is challenging due to the presence of endogenous PLP in matrices used for preparation of calibrators and quality control samples (QCs). Hence, we have developed an LC-MS/MS method for accurate and precise measurement of the concentrations of PLP in samples (20 µL) of human whole blood that addresses this issue by using a surrogate matrix and minimizing the matrix effect. We used a surrogate matrix comprising 2% bovine serum albumin (BSA) in phosphate buffer saline (PBS) for making calibrators, QCs and the concentrations were adjusted to include the endogenous PLP concentrations in the surrogate matrix according to the method of standard addition. PLP was separated from the other components of the sample matrix using protein precipitation with trichloroacetic acid 10% w/v. After centrifugation, supernatant were injected directly into the LC-MS/MS system. Calibration curves were linear and recovery was > 92%. QCs were accurate, precise, stable for four freeze-thaw cycles, and following storage at room temperature for 17h or at -80 °C for 3 months. There was no significant matrix effect using 9 different individual human blood samples. Our novel LC-MS/MS method has satisfied all of the criteria specified in the 2012 EMEA guideline on bioanalytical method validation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evaluation of protein and metabolite expression patterns in blood using mass spectrometry and high-throughput antibody-based screening platforms has potential for the discovery of new biomarkers for managing breast cancer patient treatment. Previously identified blood-based breast cancer biomarkers, including cancer antigen 15.3 (CA15-3) are useful in combination with imaging (computed tomography scans, magnetic resonance imaging, X-rays) and physical examination for monitoring tumour burden in advanced breast cancer patients. However, these biomarkers suffer from insufficient levels of accuracy and with new therapies available for the treatment of breast cancer, there is an urgent need for reliable, non-invasive biomarkers that measure tumour burden with high sensitivity and specificity so as to provide early warning of the need to switch to an alternative treatment. The aim of this study was to identify a biomarker signature of tumour burden using cancer and non-cancer (healthy controls/non-malignant breast disease) patient samples. Results demonstrate that combinations of three candidate biomarkers from Glutamate, 12-Hydroxyeicosatetraenoic acid, Beta-hydroxybutyrate, Factor V and Matrix metalloproteinase-1 with CA15-3, an established biomarker for breast cancer, were found to mirror tumour burden, with AUC values ranging from 0.71 to 0.98 when comparing non-malignant breast disease to the different stages of breast cancer. Further validation of these biomarker panels could potentially facilitate the management of breast cancer patients, especially to assess changes in tumour burden in combination with imaging and physical examination.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: Degradative enzymes, such as A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) and matrix metalloproteinases (MMPs), play key roles in osteoarthritis (OA) development. The aim of the present study was to investigate if cross-talk between subchondral bone osteoblasts (SBOs) and articular cartilage chondrocytes (ACCs) in OA alters the expression and regulation of ADAMTS5, ADAMTS4, MMP-1, MMP-2, MMP-3, MMP-8, MMP-9 and MMP-13, and also to test the possible involvement of mitogen activated protein kinase (MAPK) signaling pathway during this process. Methods: ACCs and SBOs were isolated from normal and OA patients. An in vitro co-culture model was developed to study the regulation of ADAMTS and MMPs under normal and OA joint cross-talk conditions. MAPK-ERK inhibitor, PD98059 was applied to delineate the involvement of specific pathway during this interaction process. Results: Indirect co-culture of OA SBOs with normal ACCs resulted in significantly increased expression of ADAMTS5, ADAMTS4, MMP-2, MMP-3 and MMP-9 in ACCs, whereas co-culture of OA ACCs led to increased MMP-1 and MMP-2 expression in normal SBOs. The upregulation of ADAMTS and MMPs under these conditions was correlated with activation of the MAPK-ERK1/2 signaling pathway and the addition of the MAPK-ERK inhibitor, PD98059, reversed the overexpression of ADAMTS and MMPs in co-cultures. Conclusion: In summary, we believe, these results add to the evidence that in human OA, altered bi-directional signals transmitted between SBOs and ACCs significantly impacts the critical features of both cartilage and bone by producing abnormal levels of ADAMTS and MMPs. Furthermore, we have demonstrated for the first time that this altered cross-talk was mediated by the phosphorylation of MAPK-ERK1/2 signaling pathway.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metalloproteinases have been implicated in the pathogenesis of equine laminitis and other inflammatory conditions, through their role in the degradation and remodelling of the extracellular matrix environment. Matrix metalloproteinases (MMPs) and their inhibitors are present in normal equine lamellae, with increased secretion and activation of some metalloproteinases reported in horses with laminitis associated with systemic inflammation. It is unknown whether these enzymes are involved in insulin-induced laminitis, which occurs without overt systemic inflammation. In this study, gene expression of MMP-2, MMP-9, MT1-MMP, ADAMTS-4 and TIMP-3 was determined in the lamellar tissue of normal control horses (n = 4) and horses that developed laminitis after 48 h of induced hyperinsulinaemia (n = 4), using quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). Protein concentrations of MMP-2 and MMP-9 were also examined using gelatin zymography in horses subject to prolonged hyperinsulinaemia for 6 h (n = 4), 12 h (n = 4), 24 h (n = 4) and 48 h (n = 4), and in normal control horses (n = 4). The only change in gene expression observed was an upregulation of MMP-9 (p < 0.05) in horses that developed insulin-induced laminitis (48 h). Zymographical analysis showed an increase (p < 0.05) in pro MMP-9 during the acute phase of laminitis (48 h), whereas pro MMP-2 was present in similar concentration in the tissue of all horses. Thus, MMP-2, MT1-MMP, TIMP-3 and ADAMTS-4 do not appear to play a significant role in the pathogenesis of insulin-induced laminitis. The increased expression of MMP-9 may be associated with the infiltration of inflammatory leukocytes, or may be a direct result of hyperinsulinaemia. The exact role of MMP-9 in basement membrane degradation in laminitis is uncertain as it appears to be present largely in the inactive form.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During invasion and metastasis, cancer cells interact closely with the extracellular matrix molecules by attachment, degradation, and migration. We demonstrated previously the local degradation of fluorescently labeled gelatin matrix by cancer cells at invasive membrane protrusions, called invadopodia. Using the newly developed quantitative fluorescence-activated cell sorting-phagocytosis assay and image analysis of localized degradation of fluorescently labeled matrix, we document here that degradation and site- specific removal of cross-linked gelatin matrix is correlated with the extent of phagocytosis in human breast cancer cells. A higher phagocytic capacity is generally associated with increasing invasiveness, documented in other invasion and motility assays as well. Gelatin phagocytosis is time and cell density dependent, and it is mediated by the actin cytoskeleton. Most of the intracellular gelatin is routed to actively acidified vesicles, as demonstrated by the fluorescent colocalization of gelatin with acidic vesicles, indicating the intracellular degradation of the phagocytosed matrix in lysosomes. We show here that normal intracellular routing is blocked after treatment with acidification inhibitors. In addition, the need for partial proteolytic degradation of the matrix prior to phagocytosis is demonstrated by the inhibition of gelatin phagocytosis with different serine and metalloproteinase inhibitors and its stimulation by conditioned medium containing the matrix metalloproteinases MMP-2 and MMP-9. Our results demonstrate that phagocytosis of extracellular matrix is an inherent feature of breast tumor cells that correlates with and may even directly contribute to their invasive capacity. This assay is useful for screening and evaluating potential anti-invasive agents because it is fast, reproducible, and versatile.