103 resultados para M60 machine gun


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Material for this paper comes from as report commissioned by the Department of Family Services, Aboriginal and Islander Affairs. The report is the result of a multi strategy research project designed to assess the impact of gaming machines on the fundraising capacity of charitable and community organisations in Queensland. The study was conducted during the 1993 calendar year. The first Queensland gaming machine was commissioned on the 11 February, 1992 at 11.30 am in Brisbane at the Kedron Wavell Services Club. Eighteen more clubs followed that week. Six months later there were gaming machines in 335 clubs, and 250 hotels and taverns, representing a state wide total of 7,974 machines in operation. The 10,000 gaming machine was commissioned on the 18 March, 1993 and the 1,000 operational gaming machine site was opened on 18th February, 1994.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improving energy efficiency has become increasingly important in data centers in recent years to reduce the rapidly growing tremendous amounts of electricity consumption. The power dissipation of the physical servers is the root cause of power usage of other systems, such as cooling systems. Many efforts have been made to make data centers more energy efficient. One of them is to minimize the total power consumption of these servers in a data center through virtual machine consolidation, which is implemented by virtual machine placement. The placement problem is often modeled as a bin packing problem. Due to the NP-hard nature of the problem, heuristic solutions such as First Fit and Best Fit algorithms have been often used and have generally good results. However, their performance leaves room for further improvement. In this paper we propose a Simulated Annealing based algorithm, which aims at further improvement from any feasible placement. This is the first published attempt of using SA to solve the VM placement problem to optimize the power consumption. Experimental results show that this SA algorithm can generate better results, saving up to 25 percentage more energy than First Fit Decreasing in an acceptable time frame.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches to the virtual machine placement problem consider the energy consumption by physical machines in a data center only, but do not consider the energy consumption in communication network in the data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement in order to make the data center more energy-efficient. In this paper, we propose a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both the servers and the communication network in the data center. Experimental results show that the genetic algorithm performs well when tackling test problems of different kinds, and scales up well when the problem size increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The security of power transfer across a given transmission link is typically a steady state assessment. This paper develops tools to assess machine angle stability as affected by a combination of faults and uncertainty of wind power using probability analysis. The paper elaborates on the development of the theoretical assessment tool and demonstrates its efficacy using single machine infinite bus system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation, and can also improve productivity and enhance system safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and an assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. All machine components are subjected to degradation processes in real environments and they have certain failure characteristics which can be related to the operating conditions. This paper describes a technique for accurate assessment of the remnant life of machines based on health state probability estimation and involving historical knowledge embedded in the closed loop diagnostics and prognostics systems. The technique uses a Support Vector Machine (SVM) classifier as a tool for estimating health state probability of machine degradation, which can affect the accuracy of prediction. To validate the feasibility of the proposed model, real life historical data from bearings of High Pressure Liquefied Natural Gas (HP-LNG) pumps were analysed and used to obtain the optimal prediction of remaining useful life. The results obtained were very encouraging and showed that the proposed prognostic system based on health state probability estimation has the potential to be used as an estimation tool for remnant life prediction in industrial machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter is a tutorial that teaches you how to design extended finite state machine (EFSM) test models for a system that you want to test. EFSM models are more powerful and expressive than simple finite state machine (FSM) models, and are one of the most commonly used styles of models for model-based testing, especially for embedded systems. There are many languages and notations in use for writing EFSM models, but in this tutorial we write our EFSM models in the familiar Java programming language. To generate tests from these EFSM models we use ModelJUnit, which is an open-source tool that supports several stochastic test generation algorithms, and we also show how to write your own model-based testing tool. We show how EFSM models can be used for unit testing and system testing of embedded systems, and for offline testing as well as online testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power system stabilizer (PSS) is one of the most important controllers in modern power systems for damping low frequency oscillations. Many efforts have been dedicated to design the tuning methodologies and allocation techniques to obtain optimal damping behaviors of the system. Traditionally, it is tuned mostly for local damping performance, however, in order to obtain a globally optimal performance, the tuning of PSS needs to be done considering more variables. Furthermore, with the enhancement of system interconnection and the increase of system complexity, new tools are required to achieve global tuning and coordination of PSS to achieve optimal solution in a global meaning. Differential evolution (DE) is a recognized as a simple and powerful global optimum technique, which can gain fast convergence speed as well as high computational efficiency. However, as many other evolutionary algorithms (EA), the premature of population restricts optimization capacity of DE. In this paper, a modified DE is proposed and applied for optimal PSS tuning of 39-Bus New-England system. New operators are introduced to reduce the probability of getting premature. To investigate the impact of system conditions on PSS tuning, multiple operating points will be studied. Simulation result is compared with standard DE and particle swarm optimization (PSO).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current discourse surrounding victims of online fraud is heavily premised on an individual notion of greed. The strength of this discourse permeates the thinking of those who have not experienced this type of crime, as well as victims themselves. The current discourse also manifests itself in theories of victim precipitation, which again assigns the locus of blame to individuals for their actions in an offence. While these typologies and categorisations of victims have been critiqued as “victim blaming” in other fields, this has not occurred with regard to online fraud victims, where victim focused ideas of responsibility for the offence continue to dominate. This paper illustrates the nature and extent of the greed discourse and argues that it forms part of a wider construction of online fraud that sees responsibility for victimisation lie with the victims themselves and their actions. It argues that the current discourse does not take into account the level of deception and the targeting of vulnerability that is employed by the offender in perpetrating this type of crime. It concludes by advocating the need to further examine and challenge this discourse, especially with regard to its potential impact for victim’s access to support services and the wider criminal justice system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity cost has become a major expense for running data centers and server consolidation using virtualization technology has been used as an important technology to improve the energy efficiency of data centers. In this research, a genetic algorithm and a simulation-annealing algorithm are proposed for the static virtual machine placement problem that considers the energy consumption in both the servers and the communication network, and a trading algorithm is proposed for dynamic virtual machine placement. Experimental results have shown that the proposed methods are more energy efficient than existing solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper makes a case for thinking about the primary school as a logic machine (apparatus) as a way of thinking about processes of in-school stratification. Firstly we discuss related literature on in-school stratification in primary schools, particularly as it relates to literacy learning. Secondly we explain how school reform can be thought about in terms of the idea of the machine or apparatus. In which case the processes of in-school stratification can be mapped as more than simply concerns about school organisation (such as students grouping) but also involve a politics of truth, played out in each school, that constitutes school culture and what counts as ‘good’ pedagogy. Thirdly, the chapter will focus specifically on research conducted into primary schools in the Northern Suburbs of Adelaide, one of the most educationally disadvantaged regions in Australia, as a case study of the relationship between in-school stratification and the reproduction of inequality. We will draw from more than 20 years of ethnographic work in primary school in the northern suburbs of Adelaide and provide a snapshot of a recent attempt to improve literacy achievement in a few Northern Suburbs public primary schools (SILA project). The SILA project, through diagnostic reviews, has provided a significant analysis of the challenges facing policy and practice in such challenging school contexts that also maps onto existing (inter)national research. These diagnostic reviews said ‘hard things’ that required attention by SILA schools and these included: · an over reliance on whole class, low level, routine tasks and hence a lack of challenge and rigour in the learning tasks offered to students ; · a focus on the 'code breaking' function of language at the expense of richer conceptualisations of literacy that might guide teachers’ understanding of challenging pedagogies ; · the need for substantial shifts in the culture of schools, especially unsettling deficit views of students and their communities ; · a need to provide a more ‘consistent’ approach to teaching literacy across the school; · a need to focus School Improvement Plans in order to implement a clear focus on literacy learning; and, · a need to sustain professional learning to produce new knowledge and practice . The paper will conclude with suggestions for further research and possible reform projects into the primary school as a logic machine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation technology. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches consider the energy consumption by physical machines only, but do not consider the energy consumption in communication network, in a data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement. In our preliminary research, we have proposed a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both physical machines and the communication network in a data center. Aiming at improving the performance and efficiency of the genetic algorithm, this paper presents a hybrid genetic algorithm for the energy-efficient virtual machine placement problem. Experimental results show that the hybrid genetic algorithm significantly outperforms the original genetic algorithm, and that the hybrid genetic algorithm is scalable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS–SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS–SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65–85% for hybrid PLS–SVM model respectively. Also it was found that the hybrid PLS–SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS–SVM model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To develop and evaluate machine learning techniques that identify limb fractures and other abnormalities (e.g. dislocations) from radiology reports. Materials and Methods 99 free-text reports of limb radiology examinations were acquired from an Australian public hospital. Two clinicians were employed to identify fractures and abnormalities from the reports; a third senior clinician resolved disagreements. These assessors found that, of the 99 reports, 48 referred to fractures or abnormalities of limb structures. Automated methods were then used to extract features from these reports that could be useful for their automatic classification. The Naive Bayes classification algorithm and two implementations of the support vector machine algorithm were formally evaluated using cross-fold validation over the 99 reports. Result Results show that the Naive Bayes classifier accurately identifies fractures and other abnormalities from the radiology reports. These results were achieved when extracting stemmed token bigram and negation features, as well as using these features in combination with SNOMED CT concepts related to abnormalities and disorders. The latter feature has not been used in previous works that attempted classifying free-text radiology reports. Discussion Automated classification methods have proven effective at identifying fractures and other abnormalities from radiology reports (F-Measure up to 92.31%). Key to the success of these techniques are features such as stemmed token bigrams, negations, and SNOMED CT concepts associated with morphologic abnormalities and disorders. Conclusion This investigation shows early promising results and future work will further validate and strengthen the proposed approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Cancer monitoring and prevention relies on the critical aspect of timely notification of cancer cases. However, the abstraction and classification of cancer from the free-text of pathology reports and other relevant documents, such as death certificates, exist as complex and time-consuming activities. Aims In this paper, approaches for the automatic detection of notifiable cancer cases as the cause of death from free-text death certificates supplied to Cancer Registries are investigated. Method A number of machine learning classifiers were studied. Features were extracted using natural language techniques and the Medtex toolkit. The numerous features encompassed stemmed words, bi-grams, and concepts from the SNOMED CT medical terminology. The baseline consisted of a keyword spotter using keywords extracted from the long description of ICD-10 cancer related codes. Results Death certificates with notifiable cancer listed as the cause of death can be effectively identified with the methods studied in this paper. A Support Vector Machine (SVM) classifier achieved best performance with an overall F-measure of 0.9866 when evaluated on a set of 5,000 free-text death certificates using the token stem feature set. The SNOMED CT concept plus token stem feature set reached the lowest variance (0.0032) and false negative rate (0.0297) while achieving an F-measure of 0.9864. The SVM classifier accounts for the first 18 of the top 40 evaluated runs, and entails the most robust classifier with a variance of 0.001141, half the variance of the other classifiers. Conclusion The selection of features significantly produced the most influences on the performance of the classifiers, although the type of classifier employed also affects performance. In contrast, the feature weighting schema created a negligible effect on performance. Specifically, it is found that stemmed tokens with or without SNOMED CT concepts create the most effective feature when combined with an SVM classifier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a machine learning technique called anomaly detection is employed for wind turbine bearing fault detection. Basically, the anomaly detection algorithm is used to recognize the presence of unusual and potentially faulty data in a dataset, which contains two phases: a training phase and a testing phase. Two bearing datasets were used to validate the proposed technique, fault-seeded bearing from a test rig located at Case Western Reserve University to validate the accuracy of the anomaly detection method, and a test to failure data of bearings from the NSF I/UCR Center for Intelligent Maintenance Systems (IMS). The latter data set was used to compare anomaly detection with SVM, a previously well-known applied method, in rapidly finding the incipient faults.