67 resultados para Linear mixed models


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Optimal design methods have been proposed to determine the best sampling times when sparse blood sampling is required in clinical pharmacokinetic studies. However, the optimal blood sampling time points may not be feasible in clinical practice. Sampling windows, a time interval for blood sample collection, have been proposed to provide flexibility in blood sampling times while preserving efficient parameter estimation. Because of the complexity of the population pharmacokinetic models, which are generally nonlinear mixed effects models, there is no analytical solution available to determine sampling windows. We propose a method for determination of sampling windows based on MCMC sampling techniques. The proposed method attains a stationary distribution rapidly and provides time-sensitive windows around the optimal design points. The proposed method is applicable to determine sampling windows for any nonlinear mixed effects model although our work focuses on an application to population pharmacokinetic models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Gender differences in cycling are well-documented. However, most analyses of gender differences make broad comparisons, with few studies modeling male and female cycling patterns separately for recreational and transport cycling. This modeling is important, in order to improve our efforts to promote cycling to women and men in countries like Australia with low rates of transport cycling. The main aim of this study was to examine gender differences in cycling patterns and in motivators and constraints to cycling, separately for recreational and transport cycling. Methods: Adult members of a Queensland, Australia, community bicycling organization completed an online survey about their cycling patterns; cycling purposes; and personal, social and perceived environmental motivators and constraints (47% response rate). Closed and open-end questions were completed. Using the quantitative data, multivariable linear, logistic and ordinal regression models were used to examine associations between gender and cycling patterns, motivators and constraints. The qualitative data were thematically analysed to expand upon the quantitative findings. Results: In this sample of 1862 bicyclists, men were more likely than women to cycle for recreation and for transport, and they cycled for longer. Most transport cycling was for commuting, with men more likely than women to commute by bicycle. Men were more likely to cycle on-road, and women off-road. However, most men and women did not prefer to cycle on-road without designed bicycle lanes, and qualitative data indicated a strong preference by men and women for bicycle-only off-road paths. Both genders reported personal factors (health and enjoyment related) as motivators for cycling, although women were more likely to agree that other personal, social and environmental factors were also motivating. The main constraints for both genders and both cycling purposes were perceived environmental factors related to traffic conditions, motorist aggression and safety. Women, however, reported more constraints, and were more likely to report as constraints other environmental factors and personal factors. Conclusion: Differences found in men’s and women’s cycling patterns, motivators and constraints should be considered in efforts to promote cycling, particularly in efforts to increase cycling for transport.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Earthwork planning has been considered in this article and a generic block partitioning and modelling approach has been devised to provide strategic plans of various levels of detail. Conceptually this approach is more accurate and comprehensive than others, for instance those that are section based. In response to environmental concerns the metric for decision making was fuel consumption and emissions. Haulage distance and gradient are also included as they are important components of these metrics. Advantageously the fuel consumption metric is generic and captures the physical difficulties of travelling over inclines of different gradients, that is consistent across all hauling vehicles. For validation, the proposed models and techniques have been applied to a real world road project. The numerical investigations have demonstrated that the models can be solved with relatively little CPU time. The proposed block models also result in solutions of superior quality, i.e. they have reduced fuel consumption and cost. Furthermore the plans differ considerably from those based solely upon a distance based metric thus demonstrating a need for industry to reflect upon their current practices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we present fully Bayesian experimental designs for nonlinear mixed effects models, in which we develop simulation-based optimal design methods to search over both continuous and discrete design spaces. Although Bayesian inference has commonly been performed on nonlinear mixed effects models, there is a lack of research into performing Bayesian optimal design for nonlinear mixed effects models that require searches to be performed over several design variables. This is likely due to the fact that it is much more computationally intensive to perform optimal experimental design for nonlinear mixed effects models than it is to perform inference in the Bayesian framework. In this paper, the design problem is to determine the optimal number of subjects and samples per subject, as well as the (near) optimal urine sampling times for a population pharmacokinetic study in horses, so that the population pharmacokinetic parameters can be precisely estimated, subject to cost constraints. The optimal sampling strategies, in terms of the number of subjects and the number of samples per subject, were found to be substantially different between the examples considered in this work, which highlights the fact that the designs are rather problem-dependent and require optimisation using the methods presented in this paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protein molecular motors are natural nano-machines that convert the chemical energy from the hydrolysis of adenosine triphosphate into mechanical work. These efficient machines are central to many biological processes, including cellular motion, muscle contraction and cell division. The remarkable energetic efficiency of the protein molecular motors coupled with their nano-scale has prompted an increasing number of studies focusing on their integration in hybrid micro- and nanodevices, in particular using linear molecular motors. The translation of these tentative devices into technologically and economically feasible ones requires an engineering, design-orientated approach based on a structured formalism, preferably mathematical. This contribution reviews the present state of the art in the modelling of protein linear molecular motors, as relevant to the future design-orientated development of hybrid dynamic nanodevices. © 2009 The Royal Society of Chemistry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A global framework for linear stability analyses of traffic models, based on the dispersion relation root locus method, is presented and is applied taking the example of a broad class of car-following (CF) models. This approach is able to analyse all aspects of the dynamics: long waves and short wave behaviours, phase velocities and stability features. The methodology is applied to investigate the potential benefits of connected vehicles, i.e. V2V communication enabling a vehicle to send and receive information to and from surrounding vehicles. We choose to focus on the design of the coefficients of cooperation which weights the information from downstream vehicles. The coefficients tuning is performed and different ways of implementing an efficient cooperative strategy are discussed. Hence, this paper brings design methods in order to obtain robust stability of traffic models, with application on cooperative CF models

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stability analyses have been widely used to better understand the mechanism of traffic jam formation. In this paper, we consider the impact of cooperative systems (a.k.a. connected vehicles) on traffic dynamics and, more precisely, on flow stability. Cooperative systems are emerging technologies enabling communication between vehicles and/or with the infrastructure. In a distributed communication framework, equipped vehicles are able to send and receive information to/from other equipped vehicles. Here, the effects of cooperative traffic are modeled through a general bilateral multianticipative car-following law that improves cooperative drivers' perception of their surrounding traffic conditions within a given communication range. Linear stability analyses are performed for a broad class of car-following models. They point out different stability conditions in both multianticipative and nonmultianticipative situations. To better understand what happens in unstable conditions, information on the shock wave structure is studied in the weakly nonlinear regime by the mean of the reductive perturbation method. The shock wave equation is obtained for generic car-following models by deriving the Korteweg de Vries equations. We then derive traffic-state-dependent conditions for the sign of the solitary wave (soliton) amplitude. This analytical result is verified through simulations. Simulation results confirm the validity of the speed estimate. The variation of the soliton amplitude as a function of the communication range is provided. The performed linear and weakly nonlinear analyses help justify the potential benefits of vehicle-integrated communication systems and provide new insights supporting the future implementation of cooperative systems.