93 resultados para Limited dependent variable regression


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensive groundwater withdrawal has resulted in a severe seawater intrusion problem in the Gooburrum aquifers at Bundaberg, Queensland, Australia. Better management strategies can be implemented by understanding the seawater intrusion processes in those aquifers. To study the seawater intrusion process in the region, a two-dimensional density-dependent, saturated and unsaturated flow and transport computational model is used. The model consists of a coupled system of two non-linear partial differential equations. The first equation describes the flow of a variable-density fluid, and the second equation describes the transport of dissolved salt. A two-dimensional control volume finite element model is developed for simulating the seawater intrusion into the heterogeneous aquifer system at Gooburrum. The simulation results provide a realistic mechanism by which to study the convoluted transport phenomena evolving in this complex heterogeneous coastal aquifer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Up to fifty percent of alcohol dependent individuals have alexithymia, a personality trait characterised by difficulties identifying and describing feelings, a lack of imagination and an externalised cognitive style. Although studies have examined alexithymia in relation to alcohol dependence, no research exists on mechanisms underlying this relationship. The present study examined the mediational effect of alcohol expectancies on alexithymia and alcohol dependence.----- ----- Methods: 230 outpatients completed the Toronto Alexithymia Scale (TAS-20), the Drinking Expectancy Questionnaire (DEQ) and the Alcohol Use Disorder Identification Test (AUDIT). Results: Regression analysis showed that alexithymia and alcohol dependence was, in two of three cases, partially mediated through alcohol expectancy.----- ----- Conclusions: Alcohol expectancies of assertion and affective change show promise as mediators of alcohol dependence in individuals with alexithymia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Road accidents are of great concerns for road and transport departments around world, which cause tremendous loss and dangers for public. Reducing accident rates and crash severity are imperative goals that governments, road and transport authorities, and researchers are aimed to achieve. In Australia, road crash trauma costs the nation A$ 15 billion annually. Five people are killed, and 550 are injured every day. Each fatality costs the taxpayer A$1.7 million. Serious injury cases can cost the taxpayer many times the cost of a fatality. Crashes are in general uncontrolled events and are dependent on a number of interrelated factors such as driver behaviour, traffic conditions, travel speed, road geometry and condition, and vehicle characteristics (e.g. tyre type pressure and condition, and suspension type and condition). Skid resistance is considered one of the most important surface characteristics as it has a direct impact on traffic safety. Attempts have been made worldwide to study the relationship between skid resistance and road crashes. Most of these studies used the statistical regression and correlation methods in analysing the relationships between skid resistance and road crashes. The outcomes from these studies provided mix results and not conclusive. The objective of this paper is to present a probability-based method of an ongoing study in identifying the relationship between skid resistance and road crashes. Historical skid resistance and crash data of a road network located in the tropical east coast of Queensland were analysed using the probability-based method. Analysis methodology and results of the relationships between skid resistance, road characteristics and crashes are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the establishment of the first national strategic development plan in the early 1970s, the construction industry has played an important role in terms of the economic, social and cultural development of Indonesia. The industry’s contribution to Indonesia’s gross domestic product (GDP) increased from 3.9% in 1973 to 7.7% in 2007. Business Monitoring International (2009) forecasts that Indonesia is home to one of the fastest-growing construction industries in Asia despite the average construction growth rate being expected to remain under 10% over the period 2006 – 2010. Similarly, Howlett and Powell (2006) place Indonesia as one of the 20 largest construction markets in 2010. Although the prospects for the Indonesian construction industry are now very promising, many local construction firms still face serious difficulties, such as poor performance and low competitiveness. There are two main reasons behind this problem: the environment that they face is not favourable; the other is the lack of strategic direction to improve competitiveness and performance. Furthermore, although strategic management has now become more widely used by many large construction firms in developed countries, practical examples and empirical studies related to the Indonesian construction industry remain scarce. In addition, research endeavours related to these topics in developing countries appear to be limited. This has potentially become one of the factors hampering efforts to guide Indonesian construction enterprises. This research aims to construct a conceptual model to enable Indonesian construction enterprises to develop a sound long-term corporate strategy that generates competitive advantage and superior performance. The conceptual model seeks to address the main prescription of a dynamic capabilities framework (Teece, Pisano & Shuen, 1997; Teece, 2007) within the context of the Indonesian construction industry. It is hypothesised that in a rapidly changing and varied environment, competitive success arises from the continuous development and reconfiguration of firm’s specific assets achieving competitive advantage is not only dependent on the exploitation of specific assets/capabilities, but on the exploitation of all of the assets and capabilities combinations in the dynamic capabilities framework. Thus, the model is refined through sequential statistical regression analyses of survey results with a sample size of 120 valid responses. The results of this study provide empirical evidence in support of the notion that a competitive advantage is achieved via the implementation of a dynamic capability framework as an important way for a construction enterprise to improve its organisational performance. The characteristics of asset-capability combinations were found to be significant determinants of the competitive advantage of the Indonesian construction enterprises, and that such advantage sequentially contributes to organisational performance. If a dynamic capabilities framework can work in the context of Indonesia, it suggests that the framework has potential applicability in other emerging and developing countries. This study also demonstrates the importance of the multi-stage nature of the model which provides a rich understanding of the dynamic process by which asset-capability should be exploited in combination by the construction firms operating in varying levels of hostility. Such findings are believed to be useful to both academics and practitioners, however, as this research represents a dynamic capabilities framework at the enterprise level, future studies should continue to explore and examine the framework in other levels of strategic management in construction as well as in other countries where different cultures or similar conditions prevails.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimal design for generalized linear models has primarily focused on univariate data. Often experiments are performed that have multiple dependent responses described by regression type models, and it is of interest and of value to design the experiment for all these responses. This requires a multivariate distribution underlying a pre-chosen model for the data. Here, we consider the design of experiments for bivariate binary data which are dependent. We explore Copula functions which provide a rich and flexible class of structures to derive joint distributions for bivariate binary data. We present methods for deriving optimal experimental designs for dependent bivariate binary data using Copulas, and demonstrate that, by including the dependence between responses in the design process, more efficient parameter estimates are obtained than by the usual practice of simply designing for a single variable only. Further, we investigate the robustness of designs with respect to initial parameter estimates and Copula function, and also show the performance of compound criteria within this bivariate binary setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic research of complex diseases is a challenging, but exciting, area of research. The early development of the research was limited, however, until the completion of the Human Genome and HapMap projects, along with the reduction in the cost of genotyping, which paves the way for understanding the genetic composition of complex diseases. In this thesis, we focus on the statistical methods for two aspects of genetic research: phenotype definition for diseases with complex etiology and methods for identifying potentially associated Single Nucleotide Polymorphisms (SNPs) and SNP-SNP interactions. With regard to phenotype definition for diseases with complex etiology, we firstly investigated the effects of different statistical phenotyping approaches on the subsequent analysis. In light of the findings, and the difficulties in validating the estimated phenotype, we proposed two different methods for reconciling phenotypes of different models using Bayesian model averaging as a coherent mechanism for accounting for model uncertainty. In the second part of the thesis, the focus is turned to the methods for identifying associated SNPs and SNP interactions. We review the use of Bayesian logistic regression with variable selection for SNP identification and extended the model for detecting the interaction effects for population based case-control studies. In this part of study, we also develop a machine learning algorithm to cope with the large scale data analysis, namely modified Logic Regression with Genetic Program (MLR-GEP), which is then compared with the Bayesian model, Random Forests and other variants of logic regression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There have been notable advances in learning to control complex robotic systems using methods such as Locally Weighted Regression (LWR). In this paper we explore some potential limits of LWR for robotic applications, particularly investigating its application to systems with a long horizon of temporal dependence. We define the horizon of temporal dependence as the delay from a control input to a desired change in output. LWR alone cannot be used in a temporally dependent system to find meaningful control values from only the current state variables and output, as the relationship between the input and the current state is under-constrained. By introducing a receding horizon of the future output states of the system, we show that sufficient constraint is applied to learn good solutions through LWR. The new method, Receding Horizon Locally Weighted Regression (RH-LWR), is demonstrated through one-shot learning on a real Series Elastic Actuator controlling a pendulum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iron (Fe) is the fourth most abundant element in the Earth’s crust. Excess Fe mobilization from terrestrial into aquatic systems is of concern for deterioration of water quality via biofouling and nuisance algal blooms in coastal and marine systems. Substantial Fe dissolution and transport involve alternate Fe(II) oxidation followed by Fe(III) reduction, with a diversity of Bacteria and Archaea acting as the key catalyst. Microbially-mediated Fe cycling is of global significance with regard to cycles of carbon (C), sulfur (S) and manganese (Mn). However, knowledge regarding microbial Fe cycling in circumneutral-pH habitats that prevail on Earth has been lacking until recently. In particular, little is known regarding microbial function in Fe cycling and associated Fe mobilization and greenhouse (CO2 and CH4, GHG) evolution in subtropical Australian coastal systems where microbial response to ambient variations such as seasonal flooding and land use changes is of concern. Using the plantation-forested Poona Creek catchment on the Fraser Coast of Southeast Queensland (SEQ), this research aimed to 1) study Fe cycling-associated bacterial populations in diverse terrestrial and aquatic habitats of a representative subtropical coastal circumneutral-pH (4–7) ecosystem; and 2) assess potential impacts of Pinus plantation forestry practices on microbially-mediated Fe mobilization, organic C mineralization and associated GHG evolution in coastal SEQ. A combination of wet-chemical extraction, undisturbed core microcosm, laboratory bacterial cultivation, microscopy and 16S rRNA-based molecular phylogenetic techniques were employed. The study area consisted primarily of loamy sands, with low organic C and dissolved nutrients. Total reactive Fe was abundant and evenly distributed within soil 0–30 cm profiles. Organic complexation primarily controlled Fe bioavailability and forms in well-drained plantation soils and water-logged, native riparian soils, whereas tidal flushing exerted a strong “seawater effect” in estuarine locations and formed a large proportion of inorganic Fe(III) complexes. There was a lack of Fe(II) sources across the catchment terrestrial system. Mature, first-rotation plantation clear-felling and second-rotation replanting significantly decreased organic matter and poorly crystalline Fe in well-drained soils, although variations in labile soil organic C fractions (dissolved organic C, DOC; and microbial biomass C, MBC) were minor. Both well-drained plantation soils and water-logged, native-vegetation soils were inhabited by a variety of cultivable, chemotrophic bacterial populations capable of C, Fe, S and Mn metabolism via lithotrophic or heterotrophic, (micro)aerobic or anaerobic pathways. Neutrophilic Fe(III)-reducing bacteria (FeRB) were most abundant, followed by aerobic, heterotrophic bacteria (heterotrophic plate count, HPC). Despite an abundance of FeRB, cultivable Fe(II)-oxidizing bacteria (FeOB) were absent in associated soils. A lack of links between cultivable Fe, S or Mn bacterial densities and relevant chemical measurements (except for HPC correlated with DOC) was likely due to complex biogeochemical interactions. Neither did variations in cultivable bacterial densities correlate with plantation forestry practices, despite total cultivable bacterial densities being significantly lower in estuarine soils when compared with well-drained plantation soils and water-logged, riparian native-vegetation soils. Given that bacterial Fe(III) reduction is the primary mechanism of Fe oxide dissolution in soils upon saturation, associated Fe mobilization involved several abiotic and biological processes. Abiotic oxidation of dissolved Fe(II) by Mn appeared to control Fe transport and inhibit Fe dissolution from mature, first-rotation plantation soils post-saturation. Such an effect was not observed in clear-felled and replanted soils associated with low SOM and potentially low Mn reactivity. Associated GHG evolution post-saturation mainly involved variable CO2 emissions, with low, but consistently increasing CH4 effluxes in mature, first-rotation plantation soil only. In comparison, water-logged soils in the riparian native-vegetation buffer zone functioned as an important GHG source, with high potentials for Fe mobilization and GHG, particularly CH4 emissions in riparian loam soils associated with high clay and crystalline Fe fractions. Active Fe–C cycling was unlikely to occur in lower-catchment estuarine soils associated with low cultivable bacterial densities and GHG effluxes. As a key component of bacterial Fe cycling, neutrophilic FeOB widely occurred in diverse aquatic, but not terrestrial, habitats of the catchment study area. Stalked and sheathed FeOB resembling Gallionella and Leptothrix were limited to microbial mat material deposited in surface fresh waters associated with a circumneutral-pH seep, and clay-rich soil within riparian buffer zones. Unicellular, Sideroxydans-related FeOB (96% sequence identity) were ubiquitous in surface and subsurface freshwater environments, with highest abundance in estuary-adjacent shallow coastal groundwater water associated with redox transition. The abundance of dissolved C and Fe in the groundwater-dependent system was associated with high numbers of cultivable anaerobic, heterotrophic FeRB, microaerophilic, putatively lithotrophic FeOB and aerobic, heterotrophic bacteria. This research represents the first study of microbial Fe cycling in diverse circumneutral-pH environments (terrestrial–aquatic, freshwater–estuarine, surface–subsurface) of a subtropical coastal ecosystem. It also represents the first study of its kind in the southern hemisphere. This work highlights the significance of bacterial Fe(III) reduction in terrestrial, and bacterial Fe(II) oxidation in aquatic catchment Fe cycling. Results indicate the risk of promotion of Fe mobilization due to plantation clear-felling and replanting, and GHG emissions associated with seasonal water-logging. Additional significant outcomes were also achieved. The first direct evidence for multiple biomineralization patterns of neutrophilic, microaerophilic, unicellular FeOB was presented. A putatively pure culture, which represents the first cultivable neutrophilic FeOB from the southern hemisphere, was obtained as representative FeOB ubiquitous in diverse catchment aquatic habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we explore the ability of a recent model-based learning technique Receding Horizon Locally Weighted Regression (RH-LWR) useful for learning temporally dependent systems. In particular this paper investigates the application of RH-LWR to learn control of Multiple-input Multiple-output robot systems. RH-LWR is demonstrated through learning joint velocity and position control of a three Degree of Freedom (DoF) rigid body robot.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to improve the retention of primary healthcare (PHC) nurses through exploring and assessing their quality of work life (QWL) and turnover intention. Design and methods: A cross-sectional survey design was used in this study. Data were collected using a questionnaire comprising four sections (Brooks’ survey of Quality of Nursing Work Life [QNWL], Anticipated Turnover Intention, open-ended questions and demographic characteristics). A convenience sample was recruited from 143 PHC centres in Jazan, Saudi Arabia. A response rate of 87% (n = 508/585) was achieved. The SPSS v17 for Windows and NVivo 8 were used for analysis purposes. Procedures and tests used in this study to analyse the quantitative data were descriptive statistics, t-test, ANOVA, General Linear Model (GLM) univariate analysis, standard multiple regression, and hierarchical multiple regression. Qualitative data obtained from responses to the open-ended questions were analysed using the NVivo 8. Findings: Quantitative findings suggested that PHC nurses were dissatisfied with their work life. Respondents’ scores ranged between 45 and 218 (mean = 139.45), which is lower than the average total score on Brooks’ Survey (147). Major influencing factors were classified under four dimensions. First, work life/home life factors: unsuitable working hours, lack of facilities for nurses, inability to balance work with family needs and inadequacy of vacations’ policy. Second, work design factors: high workload, insufficient workforce numbers, lack of autonomy and undertaking many non-nursing tasks. Third, work context factors: management practices, lack of development opportunities, and inappropriate working environment in terms of the level of security, patient care supplies and unavailability of recreation room. Finally, work world factors: negative public image of nursing, and inadequate payment. More positively, nurses were notably satisfied with their co-workers. Conversely, 40.4% (n = 205) of the respondents indicated that they intended to leave their current employment. The relationships between QWL and demographic variables of gender, age, marital status, dependent children, dependent adults, nationality, ethnicity, nursing tenure, organisational tenure, positional tenure, and payment per month were significant (p < .05). The eta squared test for these demographics indicates a small to medium effect size of the variation in QWL scores. Using the GLM univariate analysis, education level was also significantly related to the QWL (p < .05). The relationships between turnover intention and demographic variables including gender, age, marital status, dependent children, education level, nursing tenure, organisational tenure, positional tenure, and payment per month were significant (p < .05). The eta squared test for these demographics indicates a small to moderate effect size of the variation in the turnover intention scores. Using the GLM univariate analysis, the dependent adults’ variable was also significantly related to turnover intention (p < .05). Turnover intention was significantly related to QWL. Using standard multiple regression, 26% of the variance in turnover intention was explained by the QWL F (4,491), 43.71, p < .001, with R² = .263. Further analysis using hierarchical multiple regression found that the total variance explained by the model as a whole (demographics and QWL) was 32.1%, F (17.433) = 12.04, p < .001. QWL explained an additional 19% of the variance in turnover intention, after controlling for demographic variables, R squared change =.19, F change (4, 433) = 30.190, p < .001. The work context variable makes the strongest unique contribution (-.387) to explain the turnover intention, followed by the work design dimension (-.112). The qualitative findings reaffirmed the quantitative findings in terms of QWL and turnover intention. However, the home life/work life and work world dimensions were of great important to both QWL and turnover intention. The qualitative findings revealed a number of new factors that were not included in the survey questionnaire. These included being away from family, lack of family support, social and cultural aspects, accommodation facilities, transportation, building and infrastructure of PHC, nature of work, job instability, privacy at work, patients and community, and distance between home and workplace. Conclusion: Creating and maintaining a healthy work life for PHC nurses is very important to improve their work satisfaction, reduce turnover, enhance productivity and improve nursing care outcomes. Improving these factors could lead to a higher QWL and increase retention rates and therefore reinforcing the stabilisation of the nursing workforce. Significance of the research: Many countries are examining strategies to attract and retain the health care workforce, particularly nurses. This study identified factors that influence the QWL of PHC nurses as well as their turnover intention. It also determined the significant relationship between QWL and turnover intention. In addition, the present study tested Brooks’ survey of QNWL on PHC nurses for the first time. The qualitative findings of this study revealed a number of new variables regarding QWL and turnover intention of PHC nurses. These variables could be used to improve current survey instruments or to develop new research surveys. The study findings could be also used to develop and appropriately implement plans to improve QWL. This may help to enhance the home and work environments of PHC nurses, improve individual and organisational performance, and increase nurses’ commitment. This study contributes to the existing body of research knowledge by presenting new data and findings from a different country and healthcare system. It is the first of its kind in Saudi Arabia, especially in the field of PHC. It has examined the relationship between QWL and turnover intention of PHC nurses for the first time using nursing instruments. The study also offers a fresh explanation (new framework) of the relationship between QWL and turnover intention among PHC nurses, which could be used or tested by researchers in other settings. Implications for further research: Review of the extant literature reveals little in-depth research on the PHC workforce, especially in terms of QWL and organisational turnover in developing countries. Further research is required to develop a QWL tool for PHC nurses, taking into consideration the findings of the current study along with the local culture. Moreover, the revised theoretical framework of the current study could be tested in further research in other regions, countries or healthcare systems in order to identify its ability to predict the level of PHC nurses’ QWL and their intention to leave. There is a need to conduct longitudinal research on PHC organisations to gain an in-depth understanding of the determents of and changes in QWL and turnover intention of PHC nurses at various points of time. An intervention study is required to improve QWL and retention among PHC nurses using the findings of the current study. This would help to assess the impact of such strategies on reducing turnover of PHC nurses. Focusing on the location of the current study, it would be valuable to conduct another study in five years’ time to examine the percentage of actual turnover among PHC nurses compared with the reported turnover intention in the current study. Further in-depth research would also be useful to assess the impact of the local culture on the perception of expatriate nurses towards their QWL and their turnover intention. A comparative study is required between PHC centres and hospitals as well as the public and private health sector agencies in terms of QWL and turnover intention of nursing personnel. Findings may differ from sector to sector according to variations in health systems, working environments and the case mix of patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many physical processes exhibit fractional order behavior that varies with time or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. In this paper, we consider the time variable fractional order mobile-immobile advection-dispersion model. Numerical methods and analyses of stability and convergence for the fractional partial differential equations are quite limited and difficult to derive. This motivates us to develop efficient numerical methods as well as stability and convergence of the implicit numerical methods for the fractional order mobile immobile advection-dispersion model. In the paper, we use the Coimbra variable time fractional derivative which is more efficient from the numerical standpoint and is preferable for modeling dynamical systems. An implicit Euler approximation for the equation is proposed and then the stability of the approximation are investigated. As for the convergence of the numerical scheme we only consider a special case, i.e. the time fractional derivative is independent of time variable t. The case where the time fractional derivative depends both the time variable t and the space variable x will be considered in the future work. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time series regression models were used to examine the influence of environmental factors (soil water content and soil temperature) on the emissions of nitrous oxide (N2O) from subtropical soils, by taking into account temporal lagged environmental factors, autoregressive processes, and seasonality for three horticultural crops in a subtropical region of Australia. Fluxes of N2O, soil water content, and soil temperature were determined simultaneously on a weekly basis over a 12-month period in South East Queensland. Annual N2O emissions for soils under mango, pineapple, and custard apple were 1590, 1156, and 2038 g N2O-N/ha, respectively, with most emissions attributed to nitrification. The N2O-N emitted from the pineapple and custard apple crops was equivalent to 0.26 and 2.22%, respectively, of the applied mineral N. The change in soil water content was the key variable for describing N2O emissions at the weekly time-scale, with soil temperature at a lag of 1 month having a significant influence on average N2O emissions (averaged) at the monthly time-scale across the three crops. After accounting for soil temperature and soil water content, both the weekly and monthly time series regression models exhibited significant autocorrelation at lags of 1–2 weeks and 1–2 months, and significant seasonality for weekly N2O emissions for mango crop and for monthly N2O emissions for mango and custard apple crops in this location over this time-frame. Time series regression models can explain a higher percentage of the temporal variation of N2O emission compared with simple regression models using soil temperature and soil water content as drivers. Taking into account seasonal variability and temporal persistence in N2O emissions associated with soil water content and soil temperature may lead to a reduction in the uncertainty surrounding estimates of N2O emissions based on limited sampling effort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paraffin sections from 190 epithelial ovarian tumours, including 159 malignant and 31 benign epithelial tumours, were analysed immunohistochemically for expression of cyclin-dependent kinase inhibitor 2 (CDKN2A) gene product p16INK4A (p16). Most benign tumours showed no p16 expression in the tumour cells, whereas only 11% of malignant cancers were p16 negative. A high proportion of p16-positive tumour cells was associated with advanced stage and grade, and with poor prognosis in cancer patients. For FIGO stage 1 tumours, a high proportion of p16-positive tumour cells was associated with poorer survival, suggesting that accumulation of p16 is an early event of ovarian tumorigenesis. In contrast to tumour cells, high expression of p16 in the surrounding stromal cells was not associated with the stage and grade, but was associated with longer survival. When all parameters were combined in multivariate analysis, high p16 expression in stromal cells was not an independent predictor for survival, indicating that low p16 expression in stromal cells is associated with other markers of tumour progression. High expression of p16 survival in the stromal cells of tumours from long-term survivors suggests that tumour growth is limited to some extent by factors associated with p16 expression in the matrix.