146 resultados para Likelihood functions
Resumo:
Most unsignalised intersection capacity calculation procedures are based on gap acceptance models. Accuracy of critical gap estimation affects accuracy of capacity and delay estimation. Several methods have been published to estimate drivers’ sample mean critical gap, the Maximum Likelihood Estimation (MLE) technique regarded as the most accurate. This study assesses three novel methods; Average Central Gap (ACG) method, Strength Weighted Central Gap method (SWCG), and Mode Central Gap method (MCG), against MLE for their fidelity in rendering true sample mean critical gaps. A Monte Carlo event based simulation model was used to draw the maximum rejected gap and accepted gap for each of a sample of 300 drivers across 32 simulation runs. Simulation mean critical gap is varied between 3s and 8s, while offered gap rate is varied between 0.05veh/s and 0.55veh/s. This study affirms that MLE provides a close to perfect fit to simulation mean critical gaps across a broad range of conditions. The MCG method also provides an almost perfect fit and has superior computational simplicity and efficiency to the MLE. The SWCG method performs robustly under high flows; however, poorly under low to moderate flows. Further research is recommended using field traffic data, under a variety of minor stream and major stream flow conditions for a variety of minor stream movement types, to compare critical gap estimates using MLE against MCG. Should the MCG method prove as robust as MLE, serious consideration should be given to its adoption to estimate critical gap parameters in guidelines.
Resumo:
Here we present a sequential Monte Carlo approach to Bayesian sequential design for the incorporation of model uncertainty. The methodology is demonstrated through the development and implementation of two model discrimination utilities; mutual information and total separation, but it can also be applied more generally if one has different experimental aims. A sequential Monte Carlo algorithm is run for each rival model (in parallel), and provides a convenient estimate of the marginal likelihood (of each model) given the data, which can be used for model comparison and in the evaluation of utility functions. A major benefit of this approach is that it requires very little problem specific tuning and is also computationally efficient when compared to full Markov chain Monte Carlo approaches. This research is motivated by applications in drug development and chemical engineering.
Resumo:
Australian research on Indigenous sentencing disparities of the standard of international work is somewhat recent. Contrary to expectations based on international research, Australian studies generally have not found Indigenous offenders to be treated substantively more harshly than non-Indigenous offenders in similar circumstances. However, this research has primarily focused on adult higher courts, with little attention to lower courts and children’s courts. In this article, we examine whether Indigeneity has a direct impact on the judicial decision to incarcerate for three courts (adult higher, adult lower, children’s higher court) in Queensland. We found no significant differences in the likelihood of a sentence of incarceration in the higher courts (adult and children’s). In contrast, in the lower courts, Indigenous defendants were more likely to be imprisoned than non-Indigenous defendants when sentenced under statistically similar circumstances.
Resumo:
This paper presents a novel technique for segmenting an audio stream into homogeneous regions according to speaker identities, background noise, music, environmental and channel conditions. Audio segmentation is useful in audio diarization systems, which aim to annotate an input audio stream with information that attributes temporal regions of the audio into their specific sources. The segmentation method introduced in this paper is performed using the Generalized Likelihood Ratio (GLR), computed between two adjacent sliding windows over preprocessed speech. This approach is inspired by the popular segmentation method proposed by the pioneering work of Chen and Gopalakrishnan, using the Bayesian Information Criterion (BIC) with an expanding search window. This paper will aim to identify and address the shortcomings associated with such an approach. The result obtained by the proposed segmentation strategy is evaluated on the 2002 Rich Transcription (RT-02) Evaluation dataset, and a miss rate of 19.47% and a false alarm rate of 16.94% is achieved at the optimal threshold.
Resumo:
This paper proposes the use of Bayesian approaches with the cross likelihood ratio (CLR) as a criterion for speaker clustering within a speaker diarization system, using eigenvoice modeling techniques. The CLR has previously been shown to be an effective decision criterion for speaker clustering using Gaussian mixture models. Recently, eigenvoice modeling has become an increasingly popular technique, due to its ability to adequately represent a speaker based on sparse training data, as well as to provide an improved capture of differences in speaker characteristics. The integration of eigenvoice modeling into the CLR framework to capitalize on the advantage of both techniques has also been shown to be beneficial for the speaker clustering task. Building on that success, this paper proposes the use of Bayesian methods to compute the conditional probabilities in computing the CLR, thus effectively combining the eigenvoice-CLR framework with the advantages of a Bayesian approach to the diarization problem. Results obtained on the 2002 Rich Transcription (RT-02) Evaluation dataset show an improved clustering performance, resulting in a 33.5% relative improvement in the overall Diarization Error Rate (DER) compared to the baseline system.
Resumo:
The research described in this paper forms part of an in-depth investigation of safety culture in one of Australia’s largest construction companies. The research builds on a previous qualitative study with organisational safety leaders and further investigates how safety culture is perceived and experienced by organisational members, as well as how this relates to their safety behaviour and related outcomes at work. Participants were 2273 employees of the case study organisation, with 689 from the Construction function and 1584 from the Resources function. The results of several analyses revealed some interesting organisational variance on key measures. Specifically, the Construction function scored significantly higher on all key measures: safety climate, safety motivation, safety compliance, and safety participation. The results are discussed in terms of relevance in an applied research context.
Resumo:
This chapter contains sections titled: Introduction Case study: Estimating transmission rates of nosocomial pathogens Models and methods Data analysis and results Discussion References
Resumo:
In 1980 Alltop produced a family of cubic phase sequences that nearly meet the Welch bound for maximum non-peak correlation magnitude. This family of sequences were shown by Wooters and Fields to be useful for quantum state tomography. Alltop’s construction used a function that is not planar, but whose difference function is planar. In this paper we show that Alltop type functions cannot exist in fields of characteristic 3 and that for a known class of planar functions, x^3 is the only Alltop type function.
Resumo:
In this chapter we make assumptions about the primary role of education for the life of its beneficiaries and for society. Undoubtedly, formal education plays an important role in enhancing the likelihood for participation in future social life, including enjoyment and employment, by the student as well as the development of the well being of society in general. Similarly, education is often seen as a main means for intergenerational transmission of knowledge and culture. However, as Dewey (1916) argues, in liberal societies, education has the capacity of enhancing democratic participation in society that goes beyond passive participation by its members. One can argue that the achievement of the ideals of democracy demands a free and strong education system. In other words, while education can function as an instrument to integrate students into the present society, it also has the potential to become an instrument for its transformation by means of which citizens can develop an understanding of how their society functions and a sense of agency towards its transformation. Arguably, this is what Freire (1985) meant when he talked about the role of education to “read and write” the world. A stream of progressive educators (e.g., Apple (2004), Freire, (1985), Giroux (2001) and McLaren (2002)) taught us that the reading of the world that is capable of leading into writing the world is a critical reading; i.e., a reading that poses “Why” questions and imagines “What else can be” (Carr & Kemmis, 1987).
Resumo:
This paper provides a commentary on the contribution by Dr Chow who questioned whether the functions of learning are general across all categories of tasks or whether there are some task-particular aspects to the functions of learning in relation to task type. Specifically, they queried whether principles and practice for the acquisition of sport skills are different than what they are for musical, industrial, military and human factors skills. In this commentary we argue that ecological dynamics contains general principles of motor learning that can be instantiated in specific performance contexts to underpin learning design. In this proposal, we highlight the importance of conducting skill acquisition research in sport, rather than relying on empirical outcomes of research from a variety of different performance contexts. Here we discuss how task constraints of different performance contexts (sport, industry, military, music) provide different specific information sources that individuals use to couple their actions when performing and acquiring skills. We conclude by suggesting that his relationship between performance task constraints and learning processes might help explain the traditional emphasis on performance curves and performance outcomes to infer motor learning.
Resumo:
The current study examined the structure of the volunteer functions inventory within a sample of older individuals (N = 187). The career items were replaced with items examining the concept of continuity of work, a potentially more useful and relevant concept for this population. Factor analysis supported a four factor solution, with values, social and continuity emerging as single factors and enhancement and protective items loading together on a single factor. Understanding items did not load highly on any factor. The values and continuity functions were the only dimensions to emerge as predictors of intention to volunteer. This research has important implications for understanding the motivation of older adults to engage in contemporary volunteering settings.
Resumo:
Approximate Bayesian computation has become an essential tool for the analysis of complex stochastic models when the likelihood function is numerically unavailable. However, the well-established statistical method of empirical likelihood provides another route to such settings that bypasses simulations from the model and the choices of the approximate Bayesian computation parameters (summary statistics, distance, tolerance), while being convergent in the number of observations. Furthermore, bypassing model simulations may lead to significant time savings in complex models, for instance those found in population genetics. The Bayesian computation with empirical likelihood algorithm we develop in this paper also provides an evaluation of its own performance through an associated effective sample size. The method is illustrated using several examples, including estimation of standard distributions, time series, and population genetics models.
Resumo:
Robust hashing is an emerging field that can be used to hash certain data types in applications unsuitable for traditional cryptographic hashing methods. Traditional hashing functions have been used extensively for data/message integrity, data/message authentication, efficient file identification and password verification. These applications are possible because the hashing process is compressive, allowing for efficient comparisons in the hash domain but non-invertible meaning hashes can be used without revealing the original data. These techniques were developed with deterministic (non-changing) inputs such as files and passwords. For such data types a 1-bit or one character change can be significant, as a result the hashing process is sensitive to any change in the input. Unfortunately, there are certain applications where input data are not perfectly deterministic and minor changes cannot be avoided. Digital images and biometric features are two types of data where such changes exist but do not alter the meaning or appearance of the input. For such data types cryptographic hash functions cannot be usefully applied. In light of this, robust hashing has been developed as an alternative to cryptographic hashing and is designed to be robust to minor changes in the input. Although similar in name, robust hashing is fundamentally different from cryptographic hashing. Current robust hashing techniques are not based on cryptographic methods, but instead on pattern recognition techniques. Modern robust hashing algorithms consist of feature extraction followed by a randomization stage that introduces non-invertibility and compression, followed by quantization and binary encoding to produce a binary hash output. In order to preserve robustness of the extracted features, most randomization methods are linear and this is detrimental to the security aspects required of hash functions. Furthermore, the quantization and encoding stages used to binarize real-valued features requires the learning of appropriate quantization thresholds. How these thresholds are learnt has an important effect on hashing accuracy and the mere presence of such thresholds are a source of information leakage that can reduce hashing security. This dissertation outlines a systematic investigation of the quantization and encoding stages of robust hash functions. While existing literature has focused on the importance of quantization scheme, this research is the first to emphasise the importance of the quantizer training on both hashing accuracy and hashing security. The quantizer training process is presented in a statistical framework which allows a theoretical analysis of the effects of quantizer training on hashing performance. This is experimentally verified using a number of baseline robust image hashing algorithms over a large database of real world images. This dissertation also proposes a new randomization method for robust image hashing based on Higher Order Spectra (HOS) and Radon projections. The method is non-linear and this is an essential requirement for non-invertibility. The method is also designed to produce features more suited for quantization and encoding. The system can operate without the need for quantizer training, is more easily encoded and displays improved hashing performance when compared to existing robust image hashing algorithms. The dissertation also shows how the HOS method can be adapted to work with biometric features obtained from 2D and 3D face images.