134 resultados para Intelligent Fields
Resumo:
In this paper we use a sequence-based visual localization algorithm to reveal surprising answers to the question, how much visual information is actually needed to conduct effective navigation? The algorithm actively searches for the best local image matches within a sliding window of short route segments or 'sub-routes', and matches sub-routes by searching for coherent sequences of local image matches. In contract to many existing techniques, the technique requires no pre-training or camera parameter calibration. We compare the algorithm's performance to the state-of-the-art FAB-MAP 2.0 algorithm on a 70 km benchmark dataset. Performance matches or exceeds the state of the art feature-based localization technique using images as small as 4 pixels, fields of view reduced by a factor of 250, and pixel bit depths reduced to 2 bits. We present further results demonstrating the system localizing in an office environment with near 100% precision using two 7 bit Lego light sensors, as well as using 16 and 32 pixel images from a motorbike race and a mountain rally car stage. By demonstrating how little image information is required to achieve localization along a route, we hope to stimulate future 'low fidelity' approaches to visual navigation that complement probabilistic feature-based techniques.
Resumo:
There is consistent evidence showing that driver behaviour contributes to crashes and near miss incidents at railway level crossings (RLXs). The development of emerging Vehicle-to-Vehicle and Vehicle-to-Infrastructure technologies is a highly promising approach to improve RLX safety. To date, research has not evaluated comprehensively the potential effects of such technologies on driving behaviour at RLXs. This paper presents an on-going research programme assessing the impacts of such new technologies on human factors and drivers’ situational awareness at RLX. Additionally, requirements for the design of such promising technologies and ways to display safety information to drivers were systematically reviewed. Finally, a methodology which comprehensively assesses the effects of in-vehicle and road-based interventions warning the driver of incoming trains at RLXs is discussed, with a focus on both benefits and potential negative behavioural adaptations. The methodology is designed for implementation in a driving simulator and covers compliance, control of the vehicle, distraction, mental workload and drivers’ acceptance. This study has the potential to provide a broad understanding of the effects of deploying new in-vehicle and road-based technologies at RLXs and hence inform policy makers on safety improvements planning for RLX.
Resumo:
Exploiting wind-energy is one possible way to extend flight duration for Unmanned Arial Vehicles. Wind-energy can also be used to minimise energy consumption for a planned path. In this paper, we consider uncertain time-varying wind fields and plan a path through them. A Gaussian distribution is used to determine uncertainty in the Time-varying wind fields. We use Markov Decision Process to plan a path based upon the uncertainty of Gaussian distribution. Simulation results that compare the direct line of flight between start and target point and our planned path for energy consumption and time of travel are presented. The result is a robust path using the most visited cell while sampling the Gaussian distribution of the wind field in each cell.
Resumo:
Typical flow fields in a stormwater gross pollutant trap (GPT) with blocked retaining screens were experimentally captured and visualised. Particle image velocimetry (PIV) software was used to capture the flow field data by tracking neutrally buoyant particles with a high speed camera. A technique was developed to apply the Image Based Flow Visualization (IBFV) algorithm to the experimental raw dataset generated by the PIV software. The dataset consisted of scattered 2D point velocity vectors and the IBFV visualisation facilitates flow feature characterisation within the GPT. The flow features played a pivotal role in understanding gross pollutant capture and retention within the GPT. It was found that the IBFV animations revealed otherwise unnoticed flow features and experimental artefacts. For example, a circular tracer marker in the IBFV program visually highlighted streamlines to investigate specific areas and identify the flow features within the GPT.
Resumo:
The development of an intelligent plug-in electric vehicle (PEV) network is an important research topic in the smart grid environment. An intelligent PEV network enables a flexible control of PEV charging and discharging activities and hence PEVs can be utilized as ancillary service providers in the power system concerned. Given this background, an intelligent PEV network architecture is first developed, and followed by detailed designs of its application layers, including the charging and discharging controlling system, mobility and roaming management, as well as communication mechanisms associated. The presented architecture leverages the philosophy in mobile communication network buildup
Resumo:
Studies of Heritage Language learners‟ commitment and their ethnic identity are increasing, yet there is scant sociological research addressing topics relating to Chinese Heritage Language learners. Drawing on Bourdieu‟s signature notions of „habitus‟, „capital‟, and „field‟, this mixed methods study investigates two problems: (1) impacts of “Chineseness” and accessible resources on Chinese Heritage Language proficiency of young Chinese Australian adults in urban Australia; and (2) the meanings of Chinese Heritage Language to these young people.
Resumo:
Introduction: There is a recognised relationship between dry weather conditions and increased risk of anterior cruciate ligament (ACL) injury. Previous studies have identified 28 day evaporation as an important weather-based predictor of non-contact ACL injuries in professional Australian Football League matches. The mechanism of non-contact injury to the ACL is believed to increased traction and impact forces between footwear and playing surface. Ground hardness and the amount and quality of grass are factors that would most likely influence this and are inturn, related to the soil moisture content and prevailing weather conditions. This paper explores the relationship between soil moisture content, preceding weather conditions and the Clegg Soil Impact Test (CSIT) which is an internationally recognised standard measure of ground hardness for sports fields. Methodology: The 2.25 kg Clegg Soil Impact Test and a pair of 12 cm soil moisture probes were used to measure ground hardness and percentage moisture content. Five football fields were surveyed at 13 prescribed sites just before seven football matches from October 2008 to January 2009 (an FC Women’s WLeague team). Weather conditions recorded at the nearest weather station were obtained from the Bureau of Meteorology website and total rainfall less evaporation was calculated for 7 and 28 days prior to each match. All non-contact injuries occurring during match play and their location on the field were recorded. Results/conclusions: Ground hardness varied between CSIT 5 and 17 (x10G) (8 is considered a good value for sports fields). Variations within fields were typically greatest in the centre and goal areas. Soil moisture ranged from 3 to 40% with some fields requiring twice the moisture content of others to maintain similar CSIT values. There was a non-linear, negative relationship for ground hardness versus moisture content and a linear relationship with weather (R2, of 0.30 and 0.34, respectively). Three non-contact ACL injuries occurred during the season. Two of these were associated with hard and variable ground conditions.
Resumo:
In this paper, we present an unsupervised graph cut based object segmentation method using 3D information provided by Structure from Motion (SFM), called Grab- CutSFM. Rather than focusing on the segmentation problem using a trained model or human intervention, our approach aims to achieve meaningful segmentation autonomously with direct application to vision based robotics. Generally, object (foreground) and background have certain discriminative geometric information in 3D space. By exploring the 3D information from multiple views, our proposed method can segment potential objects correctly and automatically compared to conventional unsupervised segmentation using only 2D visual cues. Experiments with real video data collected from indoor and outdoor environments verify the proposed approach.
Resumo:
Teaching introductory programming has challenged educators through the years. Although Intelligent Tutoring Systems that teach programming have been developed to try to reduce the problem, none have been developed to teach web programming. This paper describes the design and evaluation of the PHP Intelligent Tutoring System (PHP ITS) which addresses this problem. The evaluation process showed that students who used the PHP ITS showed a significant improvement in test scores
Resumo:
The reliability analysis is crucial to reducing unexpected down time, severe failures and ever tightened maintenance budget of engineering assets. Hazard based reliability methods are of particular interest as hazard reflects the current health status of engineering assets and their imminent failure risks. Most existing hazard models were constructed using the statistical methods. However, these methods were established largely based on two assumptions: one is the assumption of baseline failure distributions being accurate to the population concerned and the other is the assumption of effects of covariates on hazards. These two assumptions may be difficult to achieve and therefore compromise the effectiveness of hazard models in the application. To address this issue, a non-linear hazard modelling approach is developed in this research using neural networks (NNs), resulting in neural network hazard models (NNHMs), to deal with limitations due to the two assumptions for statistical models. With the success of failure prevention effort, less failure history becomes available for reliability analysis. Involving condition data or covariates is a natural solution to this challenge. A critical issue for involving covariates in reliability analysis is that complete and consistent covariate data are often unavailable in reality due to inconsistent measuring frequencies of multiple covariates, sensor failure, and sparse intrusive measurements. This problem has not been studied adequately in current reliability applications. This research thus investigates such incomplete covariates problem in reliability analysis. Typical approaches to handling incomplete covariates have been studied to investigate their performance and effects on the reliability analysis results. Since these existing approaches could underestimate the variance in regressions and introduce extra uncertainties to reliability analysis, the developed NNHMs are extended to include handling incomplete covariates as an integral part. The extended versions of NNHMs have been validated using simulated bearing data and real data from a liquefied natural gas pump. The results demonstrate the new approach outperforms the typical incomplete covariates handling approaches. Another problem in reliability analysis is that future covariates of engineering assets are generally unavailable. In existing practices for multi-step reliability analysis, historical covariates were used to estimate the future covariates. Covariates of engineering assets, however, are often subject to substantial fluctuation due to the influence of both engineering degradation and changes in environmental settings. The commonly used covariate extrapolation methods thus would not be suitable because of the error accumulation and uncertainty propagation. To overcome this difficulty, instead of directly extrapolating covariate values, projection of covariate states is conducted in this research. The estimated covariate states and unknown covariate values in future running steps of assets constitute an incomplete covariate set which is then analysed by the extended NNHMs. A new assessment function is also proposed to evaluate risks of underestimated and overestimated reliability analysis results. A case study using field data from a paper and pulp mill has been conducted and it demonstrates that this new multi-step reliability analysis procedure is able to generate more accurate analysis results.
Resumo:
The Australian e-Health Research Centre (AEHRC) recently participated in the ShARe/CLEF eHealth Evaluation Lab Task 1. The goal of this task is to individuate mentions of disorders in free-text electronic health records and map disorders to SNOMED CT concepts in the UMLS metathesaurus. This paper details our participation to this ShARe/CLEF task. Our approaches are based on using the clinical natural language processing tool Metamap and Conditional Random Fields (CRF) to individuate mentions of disorders and then to map those to SNOMED CT concepts. Empirical results obtained on the 2013 ShARe/CLEF task highlight that our instance of Metamap (after ltering irrelevant semantic types), although achieving a high level of precision, is only able to identify a small amount of disorders (about 21% to 28%) from free-text health records. On the other hand, the addition of the CRF models allows for a much higher recall (57% to 79%) of disorders from free-text, without sensible detriment in precision. When evaluating the accuracy of the mapping of disorders to SNOMED CT concepts in the UMLS, we observe that the mapping obtained by our ltered instance of Metamap delivers state-of-the-art e ectiveness if only spans individuated by our system are considered (`relaxed' accuracy).
Resumo:
This thesis investigates the possibility of using an adaptive tutoring system for beginning programming students. The work involved, designing, developing and evaluating such a system and showing that it was effective in increasing the students’ test scores. In doing so, Artificial Intelligence techniques were used to analyse PHP programs written by students and to provide feedback based on any specific errors made by them. Methods were also included to provide students with the next best exercise to suit their particular level of knowledge.