221 resultados para Instrumental variable regression
Resumo:
Abstract Objective: To explore associations between physical activity and risk of falls and broken or fractured bones in community-dwelling older women. Design, setting and participants: This was a prospective observational survey with 3- and 6-year follow-ups. The sample included 8562 healthy, community-dwelling women, aged 70-75 years in 1996, who completed surveys as participants in the Australian Longitudinal Study on Women’s Health. Outcomes were reports of a fall to the ground, injury from a fall, and broken or fractured bones in 1999 and 2002. The main predictor variable was physical activity level in 1996, categorized based on weekly frequency as none/very low, low, moderate, high, and very high. Covariates were demographic and health-related variables. Logistic regression models were computed separately for each outcome in 1999 and 2002. Main results: In multivariable models, very high physical activity was associated with decreased risk of a fall in 1999 (odds ratio 0.67, 95% CI 0.48 to 0.93) and in 2002 (odds ratio 0.62, 95% CI 0.42 to 0.92). High/very high physical activity was associated with decreased risk of broken or fractured bones in 2002 (odds ratio 0.64, 95% CI 0.42 to 0.96). No significant association was found between physical activity and injury from a fall. Conclusions: The results suggest that at least daily moderate to vigorous physical activity is required for the primary prevention of falls to the ground and broken or fractured bones in women aged 70-75 years.
Resumo:
Land-change science emphasizes the intimate linkages between the human and environmental components of land management systems. Recent theoretical developments in drylands identify a small set of key principles that can guide the understanding of these linkages. Using these principles, a detailed study of seven major degradation episodes over the past century in Australian grazed rangelands was reanalyzed to show a common set of events: (i) good climatic and economic conditions for a period, leading to local and regional social responses of increasing stocking rates, setting the preconditions for rapid environmental collapse, followed by (ii) a major drought coupled with a fall in the market making destocking financially unattractive, further exacerbating the pressure on the environment; then (iii) permanent or temporary declines in grazing productivity, depending on follow-up seasons coupled again with market and social conditions. The analysis supports recent theoretical developments but shows that the establishment of environmental knowledge that is strictly local may be insufficient on its own for sustainable management. Learning systems based in a wider community are needed that combine local knowledge, formal research, and institutional support. It also illustrates how natural variability in the state of both ecological and social systems can interact to precipitate nonequilibrial change in each other, so that planning cannot be based only on average conditions. Indeed, it is this variability in both environment and social subsystems that hinders the local learning required to prevent collapse.
Resumo:
Background The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. Results We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. Conclusion The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.
Resumo:
Variable Speed Limits (VSL) is an Intelligent Transportation Systems (ITS) control tool which can enhance traffic safety and which has the potential to contribute to traffic efficiency. Queensland's motorways experience a large volume of commuter traffic in peak periods, leading to heavy recurrent congestion and a high frequency of incidents. Consequently, Queensland's Department of Transport and Main Roads have considered deploying VSL to improve safety and efficiency. This paper identifies three types of VSL and three applicable conditions for activating VSL on for Queensland motorways: high flow, queuing and adverse weather. The design objectives and methodology for each condition are analysed, and micro-simulation results are presented to demonstrate the effectiveness of VSL.
Resumo:
We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.
Resumo:
In this paper, a variable-order nonlinear cable equation is considered. A numerical method with first-order temporal accuracy and fourth-order spatial accuracy is proposed. The convergence and stability of the numerical method are analyzed by Fourier analysis. We also propose an improved numerical method with second-order temporal accuracy and fourth-order spatial accuracy. Finally, the results of a numerical example support the theoretical analysis.
Resumo:
Background: Chronic disease presents overwhelming challenges to elderly patients, their families, health care providers and the health care system. The aim of this study was to explore a theoretical model for effective management of chronic diseases, especially type 2 diabetes mellitus and/or cardiovascular disease. The assumed theoretical model considered the connections between physical function, mental health, social support and health behaviours. The study effort was to improve the quality of life for people with chronic diseases, especially type 2 diabetes and/or cardiovascular disease and to reduce health costs. Methods: A cross-sectional post questionnaire survey was conducted in early 2009 from a randomised sample of Australians aged 50 to 80 years. A total of 732 subjects were eligible for analysis. Firstly, factors influencing respondents‘ quality of life were investigated through bivariate and multivariate regression analysis. Secondly, the Theory of Planned Behaviour (TPB) model for regular physical activity, healthy eating and medication adherence behaviours was tested for all relevant respondents using regression analysis. Thirdly, TPB variable differences between respondents who have diabetes and/or cardiovascular disease and those without these diseases were compared. Finally, the TPB model for three behaviours including regular physical activity, healthy eating and medication adherence were tested in respondents with diabetes and/or cardiovascular diseases using Structure Equation Modelling (SEM). Results: This was the first study combining the three behaviours using a TPB model, while testing the influence of extra variables on the TPB model in one study. The results of this study provided evidence that the ageing process was a cumulative effect of biological change, socio-economic environment and lifelong behaviours. Health behaviours, especially physical activity and healthy eating were important modifiable factors influencing respondents‘ quality of life. Since over 80% of the respondents had at least one chronic disease, it was important to consider supporting older people‘s chronic disease self-management skills such as healthy diet, regular physical activity and medication adherence to improve their quality of life. Direct measurement of the TPB model was helpful in understanding respondents‘ intention and behaviour toward physical activity, healthy eating and medication adherence. In respondents with diabetes and/or cardiovascular disease, the TPB model predicted different proportions of intention toward three different health behaviours with 39% intending to engage in physical activity, 49% intending to engage in healthy eating and 47% intending to comply with medication adherence. Perceived behavioural control, which was proven to be the same as self-efficacy in measurement in this study, played an important role in predicting intention towards the three health behaviours. Also social norms played a slightly more important role than attitude for physical activity and medication adherence, while attitude and social norms had similar effects on healthy eating in respondents with diabetes and/or cardiovascular disease. Both perceived behavioural control and intention directly predicted recent actual behaviours. Physical activity was more a volitional control behaviour than healthy eating and medication adherence. Step by step goal setting and motivation was more important for physical activity, while accessibility, resources and other social environmental factors were necessary for improving healthy eating and medication adherence. The extra variables of age, waist circumference, health related quality of life and depression indirectly influenced intention towards the three behaviours mainly mediated through attitude and perceived behavioural control. Depression was a serious health problem that reduced the three health behaviours‘ motivation, mediated through decreased self-efficacy and negative attitude. This research provided evidence that self-efficacy is similar to perceived behavioural control in the TPB model and intention is a proximal goal toward a particular behaviour. Combining four sources of information in the self-efficacy model with the TPB model would improve chronic disease patients‘ self management behaviour and reach an improved long-term treatment outcome. Conclusion: Health intervention programs that target chronic disease management should focus on patients‘ self-efficacy. A holistic approach which is patient-centred and involves a multidisciplinary collaboration strategy would be effective. Supporting the socio-economic environment and the mental/ emotional environment for older people needs to be considered within an integrated health care system.
Resumo:
Between 2001 and 2005, the US airline industry faced financial turmoil. At the same time, the European airline industry entered a period of substantive deregulation. This period witnessed opportunities for low-cost carriers to become more competitive in the market as a result of these combined events. To help assess airline performance in the aftermath of these events, this paper provides new evidence of technical efficiency for 42 national and international airlines in 2006 using the data envelopment analysis (DEA) bootstrap approach first proposed by Simar and Wilson (J Econ, 136:31-64, 2007). In the first stage, technical efficiency scores are estimated using a bootstrap DEA model. In the second stage, a truncated regression is employed to quantify the economic drivers underlying measured technical efficiency. The results highlight the key role played by non-discretionary inputs in measures of airline technical efficiency.
Resumo:
In this paper we explore the ability of a recent model-based learning technique Receding Horizon Locally Weighted Regression (RH-LWR) useful for learning temporally dependent systems. In particular this paper investigates the application of RH-LWR to learn control of Multiple-input Multiple-output robot systems. RH-LWR is demonstrated through learning joint velocity and position control of a three Degree of Freedom (DoF) rigid body robot.
Resumo:
The motivation of the study stems from the results reported in the Excellence in Research for Australia (ERA) 2010 report. The report showed that only 12 universities performed research at or above international standards, of which, the Group of Eight (G8) universities filled the top eight spots. While performance of universities was based on number of research outputs, total amount of research income and other quantitative indicators, the measure of efficiency or productivity was not considered. The objectives of this paper are twofold. First, to provide a review of the research performance of 37 Australian universities using the data envelopment analysis (DEA) bootstrap approach of Simar and Wilson (2007). Second, to determine sources of productivity drivers by regressing the efficiency scores against a set of environmental variables.
Resumo:
Background: The objective of this study was to scrutinize number line estimation behaviors displayed by children in mathematics classrooms during the first three years of schooling. We extend existing research by not only mapping potential logarithmic-linear shifts but also provide a new perspective by studying in detail the estimation strategies of individual target digits within a number range familiar to children. Methods: Typically developing children (n = 67) from Years 1 – 3 completed a number-to-position numerical estimation task (0-20 number line). Estimation behaviors were first analyzed via logarithmic and linear regression modeling. Subsequently, using an analysis of variance we compared the estimation accuracy of each digit, thus identifying target digits that were estimated with the assistance of arithmetic strategy. Results: Our results further confirm a developmental logarithmic-linear shift when utilizing regression modeling; however, uniquely we have identified that children employ variable strategies when completing numerical estimation, with levels of strategy advancing with development. Conclusion: In terms of the existing cognitive research, this strategy factor highlights the limitations of any regression modeling approach, or alternatively, it could underpin the developmental time course of the logarithmic-linear shift. Future studies need to systematically investigate this relationship and also consider the implications for educational practice.
Resumo:
Networked control systems (NCSs) offer many advantages over conventional control; however, they also demonstrate challenging problems such as network-induced delay and packet losses. This paper proposes an approach of predictive compensation for simultaneous network-induced delays and packet losses. Different from the majority of existing NCS control methods, the proposed approach addresses co-design of both network and controller. It also alleviates the requirements of precise process models and full understanding of NCS network dynamics. For a series of possible sensor-to-actuator delays, the controller computes a series of corresponding redundant control values. Then, it sends out those control values in a single packet to the actuator. Once receiving the control packet, the actuator measures the actual sensor-to-actuator delay and computes the control signals from the control packet. When packet dropout occurs, the actuator utilizes past control packets to generate an appropriate control signal. The effectiveness of the approach is demonstrated through examples.
Resumo:
The content and context of work significantly influences an employees’ satisfaction. While managers see work motivation as a tool to engage the employees so that they perform better, academicians value work motivation for its contribution to human behaviour. Though the relationship between employee motivation and project success has been extensively covered in the literature, more research focusing on the nature of job design on project success may have been wanting. We address this gap through this study. The present study contributes to the extant literature by suggesting an operational framework of work motivation for project—based organizations. We are also advancing the conceptual understanding of this variable by understanding how the different facets of work motivation have a differing impact of the various parameters of project performance. A survey instrument using standardized scales of work motivation and project success was used. 199 project workers from various industries completed the survey. We first ‘operationalized’ the definition of work motivation for the purpose of our study through a principal component analysis of work motivation items. We obtained a five factor structure that had items pertaining to employee development, work climate, goal clarity, and job security. We then performed a Pearson’s correlation analysis which revealed moderate to significant relationship between project outcomes ad work climate; project outcomes & employee development. In order to establish a causality between work motivation and project management success, we employed linear regression analysis. The results show that work climate is a significant predictor of client satisfaction, while it moderately influences the project quality. Further, bringing in objectivity to project work is important for a successful implementation.