68 resultados para Ink splitting force
Resumo:
Rowers have and accrue greater lumbar spine bone mineral density (BMD) associated with mechanical loading produced during rowing. The aim of this study was to estimate the mechanical loading generated at the lumbar spine (LS) that is apparently providing an osteogenic benefit. The cohort comprised 14 female rowers (average age: 19.7yrs; height: 170.9 cm, weight: 59.5 kg) and 14 female matched controls (average age: 20.9 m yrs; height: 167.5 cm; weight: 58.1 kg). BMD was assessed using the Hologic QDR 2000+ bone densitometer, indicating higher lumbar spine BMD in the rowers compared to the control subjects (1,069 +/- 0.1 vs. 1,027 +/- 0.1 g/cm2). No significant difference existed for BMD at any other site. All rowers performed a six-minute simulated race on a Concept II rowing ergometer. Mechanical loading generated at the lumbar spine during this task was assessed using a two-dimensional model of the spine, enabling the calculation of the compressive and shear forces at L4/L5. The shear force was the joint reaction force perpendicular to the spine at the L4/L5 joint. Peak compressive and shear force at the lumbar spine of the rowers were 2,694 +/- 609 (N) and 660 +/- 117 (N), respectively. Peak compressive force at the LS relative to body weight was 4.6 times body weight. The literature would suggest that forces of this magnitude, generated at the LS during maximal rowing, may be contributing to the site specific higher LS BMD found in the rowers.
Resumo:
Background The hand is an element of great importance to humans, as it enables us to have different grips. Its analysis, based on an accelerometer and electromyography, is critical in order to determine its operation. The processing and analysis of variables obtained by these devices offer a different approach in functional assessment. Therefore, knowledge of the muscles and elements of the hand in the grip force will offer a better approach for different interventions. Method The functionality of the hand of seven healthy subjects was parameterized and synchronized in real time based on grip force. The AcceleGlove was used to register accelerometric (fingers and palm) values and the Mega ME6000 was used for the surface electromyography and maximum voluntary contraction for the hand and forearm muscles. A computer script based on “R” and MATLAB software was developed to enable the correct interpretation of the main variables (variation of acceleration and maximum peak value of electromyography). Results The muscles of greater activity in grip was found in the hypothenar region (0.313 ± 0.148%) and the flexor ulnaris carpi (0.360 ± 0.118%), based on maximum voluntary contraction. Reference values in the module vector of the palm have proved an essential element for the identification of the movement phases. The ring and index fingers were the elements with the greatest variation of acceleration in the movement phases. Conclusion: Parameterization of the force grip and fragmentation of the registered data has been made possible due to the development of a technical procedure.
Resumo:
The thesis provides an understanding of the ignored need for a modern air defence system for the Australian air force to meet the growing threat from Japan in the 1930s and early 1940s. The quality of advice provided to, and accepted by, Australian politicians was misleading and eliminated the need for fighters and interceptors despite glaring evidence to the contrary. Based on primary source material, including official documents, Allied and Axis pilot memoirs, popular aviation literature and newspaper and magazine articles and interviews, the thesis highlights the inability of Australian politicians to face the reality of the international situation.
Resumo:
Mechanical flexibility is considered an asset in consumer electronics and next-generation electronic systems. Printed and flexible electronic devices could be embedded into clothing or other surfaces at home or office or in many products such as low-cost sensors integrated in transparent and flexible surfaces. In this context inks based on graphene and related two-dimensional materials (2DMs) are gaining increasing attention owing to their exceptional (opto)electronic, electrochemical and mechanical properties. The current limitation relies on the use of solvents, providing stable dispersions of graphene and 2DMs and fitting the proper fluidic requirements for printing, which are in general not environmentally benign, and with high boiling point. Non-toxic and low boiling point solvents do not possess the required rheological properties (i.e., surface tension, viscosity and density) for the solution processing of graphene and 2DMs. Such solvents (e.g., water, alcohols) require the addition of stabilizing agents such as polymers or surfactants for the dispersion of graphene and 2DMs, which however unavoidably corrupt their properties, thus preventing their use for the target application. Here, we demonstrate a viable strategy to tune the fluidic properties of water/ethanol mixtures (low-boiling point solvents) to first effectively exfoliate graphite and then disperse graphene flakes to formulate graphene-based inks. We demonstrate that such inks can be used to print conductive stripes (sheet resistance of ~13 kΩ/□) on flexible substrates (polyethylene terephthalate), moving a step forward towards the realization of graphene-based printed electronic devices.
Resumo:
Interfacing carbon nanodots (C-dots) with graphitic carbon nitride (g-C3N4) produces a metal-free system that has recently demonstrated significant enhancement of photo-catalytic performance for water splitting into hydrogen [Science, 2015, 347, 970–974]. However, the underlying photo-catalytic mechanism is not fully established. Herein, we have carried out density functional theory (DFT) calculations to study the interactions between g-C3N4 and trigonal/hexagonal shaped C-dots. We find that hybrid C-dots/g-C3N4 can form a type-II van der Waals heterojunction, leading to significant reduction of band gap. The C-dot decorated g-C3N4 enhances the separation of photogenerated electron and hole pairs and the composite's visible light response. Interestingly, the band alignment of C-dots and g-C3N4 calculated by the hybrid functional method indicates that C-dots act as a spectral sensitizer in hybrid C-dots/g-C3N4 for water splitting. Our results offer new theoretical insights into this metal-free photocatalyst for water splitting.
Resumo:
HYPOTHESIS Bone is a metabolically active tissue which responds to high strain loading. The purpose of this study was to examine the bone response to high +Gz force loading generated during high performance flying. METHODS The bone response to +Gz force loading was monitored in 10 high performance RAAF pilots and 10 gender-, age-, height-, weight-matched control subjects. The pilots were stationed at the RAAF base at Pearce, Western Australia, all completing the 1-yr flight training course. The pilots flew the Pilatus PC-9 aircraft, routinely sustaining between 2.0 and 6.0 +Gz. Bone mineral density (BMD) and bone mineral content (BMC) were measured at baseline and 12 mo, using the Hologic QDR 2000+ bone densitometer. RESULTS After controlling for change in total body weight and fat mass, the pilots experienced a significant increase in BMD and BMC for thoracic spine, pelvis, and total body, in the magnitude of 11.0%, 4.9%, and 3.7%, respectively. However, no significant changes in bone mineral were observed in the pilots lumbar spine, arms or legs. The control group experienced a significant decrease in pelvic BMC, with no other bone mineral changes observed at any site. CONCLUSIONS These findings suggest that site specific BMD is increased in response to high +Gz forces generated during high performance flying in a PC-9.
Resumo:
In order to assess the structural reliability of bridges, an accurate and cost effective Non-Destructive Evaluation (NDE) technology is required to ensure their safe and reliable operation. Over 60% of the Australian National Highway System is prestressed concrete (PSC) bridges according to the Bureau of Transport and Communication Economics (1997). Most of the in-service bridges are more than 30 years old and may experience a heavier traffic load than their original intended level. Use of Ultrasonic waves is continuously increasing for (NDE) and Structural Health Monitoring (SHM) in civil, aerospace, electrical, mechanical applications. Ultrasonic Lamb waves are becoming more popular for NDE because it can propagate long distance and reach hidden regions with less energy loses. The purpose of this study is to numerically quantify prestress force (PSF) of (PSC) beam using the fundamental theory of acoustic-elasticity. A three-dimension finite element modelling approach is set up to perform parametric studies in order to better understand how the lamb wave propagation in PSC beam is affected by changing in the PSF level. Results from acoustic-elastic measurement on prestressed beam are presented, showing the feasibility of the lamb wave for PSF evaluation in PSC bridges.
Resumo:
The monosaccharide 2-O-sulfo-α-l-iduronic acid (IdoA2S) is one of the major components of glycosaminoglycans. The ability of molecular mechanics force fields to reproduce ring-puckering conformational equilibrium is important for the successful prediction of the free energies of interaction of these carbohydrates with proteins. Here we report unconstrained molecular dynamics simulations of IdoA2S monosaccharide that were carried out to investigate the ability of commonly used force fields to reproduce its ring conformational flexibility in aqueous solution. In particular, the distribution of ring conformer populations of IdoA2S was determined. The GROMOS96 force field with the SPC/E water potential can predict successfully the dominant skew-boat to chair conformational transition of the IdoA2S monosaccharide in aqueous solution. On the other hand, the GLYCAM06 force field with the TIP3P water potential sampled transitional conformations between the boat and chair forms. Simulations using the GROMOS96 force field showed no pseudorotational equilibrium fluctuations and hence no inter-conversion between the boat and twist boat ring conformers. Calculations of theoretical proton NMR coupling constants showed that the GROMOS96 force field can predict the skew-boat to chair conformational ratio in good agreement with the experiment, whereas GLYCAM06 shows worse agreement. The omega rotamer distribution about the C5–C6 bond was predicted by both force fields to have torsions around 10°, 190°, and 360°.