85 resultados para Induced Damage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: Neuropathy is a cause of significant disability in patients with Fabry disease, yet its diagnosis is difficult. In this study we compared the novel noninvasive techniques of corneal confocal microscopy (CCM) to quantify small-fiber pathology, and non-contact corneal esthesiometry (NCCA) to quantify loss of corneal sensation, with established tests of neuropathy in patients with Fabry disease. Ten heterozygous females with Fabry disease not on enzyme replacement therapy (ERT), 6 heterozygous females, 6 hemizygous males on ERT, and 14 age-matched, healthy volunteers underwent detailed quantification of neuropathic symptoms, neurological deficits, neurophysiology, quantitative sensory testing (QST), NCCA, and CCM. All patients with Fabry disease had significant neuropathic symptoms and an elevated Mainz score. Peroneal nerve amplitude was reduced in all patients and vibration perception threshold was elevated in both male and female patients on ERT. Cold sensation (CS) threshold was significantly reduced in both male and female patients on ERT (P < 0.02), but warm sensation (WS)and heat-induced pain (HIP) were only significantly increased in males onERT (P<0.01). However, corneal sensation assessed withNCCAwas significantly reduced in female (P < 0.02) and male (P < 0.04) patients on ERT compared with control subjects. According to CCM, corneal nerve fiber and branch density was significantly reduced in female (P < 0.03) and male (P < 0.02) patients on ERT compared with control subjects. Furthermore, the severity of neuropathic symptoms and the neurological component of the Mainz Severity Score Index correlated significantly with QSTand CCM. This study shows that CCM and NCCA provide a novel means to detect early nerve fiber damage and dysfunction, respectively, in patients with Fabry disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Exercise could contribute to weight loss by altering the sensitivity of the appetite regulatory system. Objective: The aim of this study was to assess the effects of 12 wk of mandatory exercise on appetite control. Design: Fifty-eight overweight and obese men and women [mean (±SD) body mass index (in kg/m2) = 31.8 ± 4.5, age = 39.6 ± 9.8 y, and maximal oxygen intake = 29.1 ± 5.7 mL · kg–1 · min–1] completed 12 wk of supervised exercise in the laboratory. The exercise sessions were designed to expend 2500 kcal/wk. Subjective appetite sensations and the satiating efficiency of a fixed breakfast were compared at baseline (week 0) and at week 12. An Electronic Appetite Rating System was used to measure subjective appetite sensations immediately before and after the fixed breakfast in the immediate postprandial period and across the whole day. The satiety quotient of the breakfast was determined by calculating the change in appetite scores relative to the breakfast's energy content. Results: Despite large variability, there was a significant reduction in mean body weight (3.2 ± 3.6 kg), fat mass (3.2 ± 2.2 kg), and waist circumference (5.0 ± 3.2 cm) after 12 wk. The analysis showed that a reduction in body weight and body composition was accompanied by an increase in fasting hunger and in average hunger across the day (P < 0.0001). Paradoxically, the immediate and delayed satiety quotient of the breakfast also increased significantly (P < 0.05). Conclusions: These data show that the effect of exercise on appetite regulation involves at least 2 processes: an increase in the overall (orexigenic) drive to eat and a concomitant increase in the satiating efficiency of a fixed meal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-storey buildings are highly vulnerable to terrorist bombing attacks in various parts of the world. Large numbers of casualties and extensive property damage result not only from blast overpressure, but also from the failing of structural components. Understanding the blast response and damage consequences of reinforced concrete (RC) building frames is therefore important when assessing multi-storey buildings designed to resist normal gravity loads. However, limited research has been conducted to identify the blast response and damage of RC frames in order to assess the vulnerability of entire buildings. This paper discusses the blast response and evaluation of damage of three-dimension (3D) RC rigid frame under potential blast loads scenarios. The explicit finite element modelling and analysis under time history blast pressure loads were carried out by LS DYNA code. Complete 3D RC frame was developed with relevant reinforcement details and material models with strain rate effect. Idealised triangular blast pressures calculated from standard manuals are applied on the front face of the model in the present investigation. The analysis results show the blast response, as displacements and material yielding of the structural elements in the RC frame. The level of damage is evaluated and classified according to the selected load case scenarios. Residual load carrying capacities are evaluated and level of damage was presented by the defined damage indices. This information is necessary to determine the vulnerability of existing multi-storey buildings with RC frames and to identify the level of damage under typical external explosion environments. It also provides basic guidance to the design of new buildings to resist blast loads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in load characteristics, deterioration with age, environmental influences and random actions may cause local or global damage in structures, especially in bridges, which are designed for long life spans. Continuous health monitoring of structures will enable the early identification of distress and allow appropriate retrofitting in order to avoid failure or collapse of the structures. In recent times, structural health monitoring (SHM) has attracted much attention in both research and development. Local and global methods of damage assessment using the monitored information are an integral part of SHM techniques. In the local case, the assessment of the state of a structure is done either by direct visual inspection or using experimental techniques such as acoustic emission, ultrasonic, magnetic particle inspection, radiography and eddy current. A characteristic of all these techniques is that their application requires a prior localization of the damaged zones. The limitations of the local methodologies can be overcome by using vibration-based methods, which give a global damage assessment. The vibration-based damage detection methods use measured changes in dynamic characteristics to evaluate changes in physical properties that may indicate structural damage or degradation. The basic idea is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Changes in the physical properties will therefore cause changes in the modal properties. Any reduction in structural stiffness and increase in damping in the structure may indicate structural damage. This research uses the variations in vibration parameters to develop a multi-criteria method for damage assessment. It incorporates the changes in natural frequencies, modal flexibility and modal strain energy to locate damage in the main load bearing elements in bridge structures such as beams, slabs and trusses and simple bridges involving these elements. Dynamic computer simulation techniques are used to develop and apply the multi-criteria procedure under different damage scenarios. The effectiveness of the procedure is demonstrated through numerical examples. Results show that the proposed method incorporating modal flexibility and modal strain energy changes is competent in damage assessment in the structures treated herein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessing the structural health state of urban infrastructure is crucial in terms of infrastructure sustainability. This chapter uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridges. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely, the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal flexibility and modal strain energy change, before and after damage, are obtained and used as the indices for the assessment of structural health state. The feasibility and capability of the approach is demonstrated through numerical studies of a proposed structure with six damage scenarios. It is concluded that the modal strain energy method is capable of application to multiple-girder composite bridges, as evidenced through the example treated in this chapter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the effects of any interventions which aim to prevent or manage radiation-induced skin reactions in people with cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background A complete explanation of the mechanisms by which Pb2+ exerts toxic effects on developmental central nervous system remains unknown. Glutamate is critical to the developing brain through various subtypes of ionotropic or metabotropic glutamate receptors (mGluRs). Ionotropic N-methyl-D-aspartate receptors have been considered as a principal target in lead-induced neurotoxicity. The relationship between mGluR3/mGluR7 and synaptic plasticity had been verified by many recent studies. The present study aimed to examine the role of mGluR3/mGluR7 in lead-induced neurotoxicity. Methods Twenty-four adult and female rats were randomly selected and placed on control or 0.2% lead acetate during gestation and lactation. Blood lead and hippocampal lead levels of pups were analyzed at weaning to evaluate the actual lead content at the end of the exposure. Impairments of short -term memory and long-term memory of pups were assessed by tests using Morris water maze and by detection of hippocampal ultrastructural alterations on electron microscopy. The impact of lead exposure on mGluR3 and mGluR7 mRNA expression in hippocampal tissue of pups were investigated by quantitative real-time polymerase chain reaction and its potential role in lead neurotoxicity were discussed. Results Lead levels of blood and hippocampi in the lead-exposed rats were significantly higher than those in the controls (P < 0.001). In tests using Morris Water Maze, the overall decrease in goal latency and swimming distance was taken to indicate that controls had shorter latencies and distance than lead-exposed rats (P = 0.001 and P < 0.001 by repeated-measures analysis of variance). On transmission electron microscopy neuronal ultrastructural alterations were observed and the results of real-time polymerase chain reaction showed that exposure to 0.2% lead acetate did not substantially change gene expression of mGluR3 and mGluR7 mRNA compared with controls. Conclusion Exposure to lead before and after birth can damage short-term and long-term memory ability of young rats and hippocampal ultrastructure. However, the current study does not provide evidence that the expression of rat hippocampal mGluR3 and mGluR7 can be altered by systemic administration of lead during gestation and lactation, which are informative for the field of lead-induced developmental neurotoxicity noting that it seems not to be worthwhile to include mGluR3 and mGluR7 in future studies. Background

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A plethora of literature exists on irrigation development. However, only a few studies analyse the distributional issues associated with irrigation induced technological changes (IITC) in the context of commodity markets. Furthermore, these studies deal with only the theoretical arguments and to date no proper investigation has been conducted to examine the long-term benefits of adopting modern irrigation technology. This study investigates the long-term benefit changes of irrigation induced technological changes using data from Sri Lanka with reference to rice farming. The results show that (1) adopting modern technology on irrigation increases the overall social welfare through consumption of a larger quantity at a lower cost (2) the magnitude, sensitivity and distributional gains depend on the price elasticity of demand and supply as well as the size of the marketable surplus (3) non-farm sector gains are larger than farm sector gains (4) the distribution of the benefits among different types of producers depend on the magnitude of the expansion of the irrigated areas as well as the competition faced by traditional farmers (5) selective technological adoption and subsidies have a detrimental effect on the welfare of other producers who do not enjoy the same benefits (6) the short-term distributional effects are more severe than the long-term effects among different groups of farmers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoelectric polymers based on polyvinylidene flouride (PVDF) are of interest as adaptive materials for large aperture space-based telescopes. In this study, two piezoelectric polymers, PVDF and P(VDF-TrFE), were exposed to conditions simulating the thermal, radiative and atomic oxygen conditions of low Earth orbit. The degradation pathways were governed by a combination of chemical and physical degradation processes with the molecular changes primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure, as evident from depoling, loss of orientation and surface erosion. The piezoelectric responsiveness of each polymer was strongly dependent on exposure temperature. Radiation and atomic oxygen exposure caused physical and chemical degradation, which would ultimately cause terminal damage of thin films, but did not adversely affect the piezoelectric properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance criteria of piezoelectric polymers based on polyvinylidene flouride (PVDF) in complex space environments have been evaluated. Thin films of these materials are being explored as in-situ responsive materials for large aperture space-based telescopes with the shape deformation and optical features dependent on long-term deformation and optical features dependent on long-term degradation effects, mainly due to thermal cycling, vacuum UV exposure and atomic oxygen. A summary of previous studies related to materials testing and performance prediction based on a laboratory environment is presented. The degradation pathways are a combination of molecular chemical changes primarily induced via radiative damage and physical degradation processes due to temperature and atomic oxygen exposure resulting in depoling, loss of orientation and surface erosing. Experimental validation for these materials to be used in space is being conducted as part of MISSE-6 (Materials International Space Station Experiment) with an overview of the experimental strategies discussed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, gamma, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using gamma- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The previous investigations have shown that the modal strain energy correlation method, MSEC, could successfully identify the damage of truss bridge structures. However, it has to incorporate the sensitivity matrix to estimate damage and is not reliable in certain damage detection cases. This paper presents an improved MSEC method where the prediction of modal strain energy change vector is differently obtained by running the eigensolutions on-line in optimisation iterations. The particular trail damage treatment group maximising the fitness function close to unity is identified as the detected damage location. This improvement is then compared with the original MSEC method along with other typical correlation-based methods on the finite element model of a simple truss bridge. The contributions to damage detection accuracy of each considered mode is also weighed and discussed. The iterative searching process is operated by using genetic algorithm. The results demonstrate that the improved MSEC method suffices the demand in detecting the damage of truss bridge structures, even when noised measurement is considered.