203 resultados para Indian Trust Fund (U.S.)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recommender systems are one of the recent inventions to deal with ever growing information overload. Collaborative filtering seems to be the most popular technique in recommender systems. With sufficient background information of item ratings, its performance is promising enough. But research shows that it performs very poor in a cold start situation where previous rating data is sparse. As an alternative, trust can be used for neighbor formation to generate automated recommendation. User assigned explicit trust rating such as how much they trust each other is used for this purpose. However, reliable explicit trust data is not always available. In this paper we propose a new method of developing trust networks based on user’s interest similarity in the absence of explicit trust data. To identify the interest similarity, we have used user’s personalized tagging information. This trust network can be used to find the neighbors to make automated recommendations. Our experiment result shows that the proposed trust based method outperforms the traditional collaborative filtering approach which uses users rating data. Its performance improves even further when we utilize trust propagation techniques to broaden the range of neighborhood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trust can be used for neighbor formation to generate automated recommendations. User assigned explicit rating data can be used for this purpose. However, the explicit rating data is not always available. In this paper we present a new method of generating trust network based on user’s interest similarity. To identify the interest similarity, we use user’s personalized tag information. This trust network can be used to find the neighbors to make automated recommendation. Our experiment result shows that the precision of the proposed method outperforms the traditional collaborative filtering approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, there is a dramatic growth in number and popularity of online social networks. There are many networks available with more than 100 million registered users such as Facebook, MySpace, QZone, Windows Live Spaces etc. People may connect, discover and share by using these online social networks. The exponential growth of online communities in the area of social networks attracts the attention of the researchers about the importance of managing trust in online environment. Users of the online social networks may share their experiences and opinions within the networks about an item which may be a product or service. The user faces the problem of evaluating trust in a service or service provider before making a choice. Recommendations may be received through a chain of friends network, so the problem for the user is to be able to evaluate various types of trust opinions and recommendations. This opinion or recommendation has a great influence to choose to use or enjoy the item by the other user of the community. Collaborative filtering system is the most popular method in recommender system. The task in collaborative filtering is to predict the utility of items to a particular user based on a database of user rates from a sample or population of other users. Because of the different taste of different people, they rate differently according to their subjective taste. If two people rate a set of items similarly, they share similar tastes. In the recommender system, this information is used to recommend items that one participant likes, to other persons in the same cluster. But the collaborative filtering system performs poor when there is insufficient previous common rating available between users; commonly known as cost start problem. To overcome the cold start problem and with the dramatic growth of online social networks, trust based approach to recommendation has emerged. This approach assumes a trust network among users and makes recommendations based on the ratings of the users that are directly or indirectly trusted by the target user.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

know personally. They also communicate with other members of the network who are the friends of their friends and may be friends of their friend’s network. They share their experiences and opinions within the social network about an item which may be a product or service. The user faces the problem of evaluating trust in a service or service provider before making a choice. Opinions, reputations and ecommendations will influence users' choice and usage of online resources. Recommendations may be received through a chain of friends of friends, so the problem for the user is to be able to evaluate various types of trust recommendations and reputations. This opinion or ecommendation has a great influence to choose to use or enjoy the item by the other user of the community. Users share information on the level of trust they explicitly assign to other users. This trust can be used to determine while taking decision based on any recommendation. In case of the absence of direct connection of the recommender user, propagated trust could be useful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectra of the uranyl titanate mineral euxenite were analyzed and related to the mineral structure. A comparison is made with the Raman spectra of uranyl oxyhydroxide hydrates. The obsd. bands are attributed to the Ti[n.63743]O and (UO2)2+ stretching and bending vibrations, as well as lattice vibrations of rare-earth ions. The Raman bands of euxenite are in harmony with those of the uranyl oxyhydroxides. The mineral euxenite is metamict as is evidenced by the intensity of the U[n.63743]O stretching and bending modes, which are of lower intensity than expected, and with bands that are significantly broader.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimates of the half-life to convergence of prices across a panel of cities are subject to bias from three potential sources: inappropriate cross-sectional aggregation of heterogeneous coefficients, presence of lagged dependent variables in a model with individual fixed effects, and time aggregation of commodity prices. This paper finds no evidence of heterogeneity bias in annual CPI data for 17 U.S. cities from 1918 to 2006, but correcting for the “Nickell bias” and time aggregation bias produces a half-life of 7.5 years, shorter than estimates from previous studies.

Relevância:

20.00% 20.00%

Publicador: