87 resultados para Hybrid linear model


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Subsampling is a common method for estimating the abundance of species in trawl catches. However, the accuracy of subsampling in representing the total catch has not been assessed. To estimate one possible source of bias due to subsampling, we tested whether the position on trawler sorting trays from which subsamples were taken affected their ability to represent species in catches. This was done by sorting catches into 10 kg subsamples and comparing subsamples taken from different positions on the sorting tray. Comparisons were made after species were grouped into three categories of abundance, either 'rare', 'common' or 'abundant'. A generalised linear model analysis showed that taking subsamples from different positions on the sorting tray had no major effect on estimating the total numbers or weights of fish or invertebrates, or the total number of fish or invertebrate taxa, recorded in each position. Some individual taxa showed differences between positions on the sorting tray (11.5% of taxa ina three-position design; 25% in a five-position design). But consistent and meaningful patterns in the position of these taxa on the sorting tray could only be seen for the pony fish Leiognathus moretoniensis and the saucer scallop Amusium pleuronectes. Because most bycatch laxa are well mixed throughout the catch, subsamples can be taken from any position on trawler sorting trays without introducing bias.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impact of global positioning systems (GPS) and plotter systems on the relative fishing power of the northern prawn fishery fleet on tiger prawns (Penaeus esculentus Haswell, 1879, and P. semisulcatus de Haan, 1850) was investigated from commercial catch data. A generalized linear model was used to account for differences in fishing power between boats and changes in prawn abundance. It was found that boats that used a GPS alone had 4% greater fishing power than boats without a CPS. The addition of a plotter raised the power by 7% over boats without the equipment. For each year between the first to third that a fisher has been working with plotters, there is an additional 2 or 3% increase. It appears that when all boats have a GPS and plotter for at least 3 years, the fishing power of the fleet will increase by 12%. Management controls have reduced the efficiency of each boat and lowered the number of days available to fish, but this may not have been sufficient to counteract the increases. Further limits will be needed to maintain the desired levels of mortality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The quality of species distribution models (SDMs) relies to a large degree on the quality of the input data, from bioclimatic indices to environmental and habitat descriptors (Austin, 2002). Recent reviews of SDM techniques, have sought to optimize predictive performance e.g. Elith et al., 2006. In general SDMs employ one of three approaches to variable selection. The simplest approach relies on the expert to select the variables, as in environmental niche models Nix, 1986 or a generalized linear model without variable selection (Miller and Franklin, 2002). A second approach explicitly incorporates variable selection into model fitting, which allows examination of particular combinations of variables. Examples include generalized linear or additive models with variable selection (Hastie et al. 2002); or classification trees with complexity or model based pruning (Breiman et al., 1984, Zeileis, 2008). A third approach uses model averaging, to summarize the overall contribution of a variable, without considering particular combinations. Examples include neural networks, boosted or bagged regression trees and Maximum Entropy as compared in Elith et al. 2006. Typically, users of SDMs will either consider a small number of variable sets, via the first approach, or else supply all of the candidate variables (often numbering more than a hundred) to the second or third approaches. Bayesian SDMs exist, with several methods for eliciting and encoding priors on model parameters (see review in Low Choy et al. 2010). However few methods have been published for informative variable selection; one example is Bayesian trees (O’Leary 2008). Here we report an elicitation protocol that helps makes explicit a priori expert judgements on the quality of candidate variables. This protocol can be flexibly applied to any of the three approaches to variable selection, described above, Bayesian or otherwise. We demonstrate how this information can be obtained then used to guide variable selection in classical or machine learning SDMs, or to define priors within Bayesian SDMs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SNPs discovered by genome-wide association studies (GWASs) account for only a small fraction of the genetic variation of complex traits in human populations. Where is the remaining heritability? We estimated the proportion of variance for human height explained by 294,831 SNPs genotyped on 3,925 unrelated individuals using a linear model analysis, and validated the estimation method with simulations based on the observed genotype data. We show that 45% of variance can be explained by considering all SNPs simultaneously. Thus, most of the heritability is not missing but has not previously been detected because the individual effects are too small to pass stringent significance tests. We provide evidence that the remaining heritability is due to incomplete linkage disequilibrium between causal variants and genotyped SNPs, exacerbated by causal variants having lower minor allele frequency than the SNPs explored to date.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Extreme heat events (both heat waves and extremely hot days) are increasing in frequency and duration globally and cause more deaths in Australia than any other extreme weather event. Numerous studies have demonstrated a link between extreme heat events and an increased risk of morbidity and death. In this study, the researchers sought to identify if extreme heat events in the Tasmanian population were associated with any changes in emergency department admissions to the Royal Hobart Hospital (RHH) for the period 2003-2010. Methods: Non-identifiable RHH emergency department data and climate data from the Australian Bureau of Meteorology were obtained for the period 2003-2010. Statistical analyses were conducted using the computer statistical computer software ‘R’ with a distributed lag non-linear model (DLNM) package used to fit a quassi-Poisson generalised linear regression model. Results: This study showed that RR of admission to RHH during 2003-2010 was significant over temperatures of 24 C with a lag effect lasting 12 days and main effect noted one day after the extreme heat event. Discussion: This study demonstrated that extreme heat events have a significant impact on public hospital admissions. Two limitations were identified: admissions data rather than presentations data were used and further analysis could be done to compare types of admissions and presentations between heat and non-heat events. Conclusion: With the impacts of climate change already being felt in Australia, public health organisations in Tasmania and the rest of Australia need to implement adaptation strategies to enhance resilience to protect the public from the adverse health effects of heat events and climate change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction Patients post sepsis syndromes have a poor quality of life and a high rate of recurring illness or mortality. Follow-up clinics have been instituted for patients postgeneral intensive care but evidence is sparse, and there has been no clinic specifically for survivors of sepsis. The aim of this trial is to investigate if targeted screening and appropriate intervention to these patients can result in an improved quality of life (Short Form 36 health survey (SF36V.2)), decreased mortality in the first 12 months, decreased readmission to hospital and/or decreased use of health resources. Methods and analysis 204 patients postsepsis syndromes will be randomised to one of the two groups. The intervention group will attend an outpatient clinic two monthly for 6 months and receive screening and targeted intervention. The usual care group will remain under the care of their physician. To analyse the results, a baseline comparison will be carried out between each group. Generalised estimating equations will compare the SF36 domain scores between groups and across time points. Mortality will be compared between groups using a Cox proportional hazards (time until death) analysis. Time to first readmission will be compared between groups by a survival analysis. Healthcare costs will be compared between groups using a generalised linear model. Economic (health resource) evaluation will be a within-trial incremental cost utility analysis with a societal perspective. Ethics and dissemination Ethical approval has been granted by the Royal Brisbane and Women’s Hospital Human Research Ethics Committee (HREC; HREC/13/QRBW/17), The University of Queensland HREC (2013000543), Griffith University (RHS/08/14/HREC) and the Australian Government Department of Health (26/2013). The results of this study will be submitted to peer-reviewed intensive care journals and presented at national and international intensive care and/or rehabilitation conferences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sexually transmitted chlamydial infection initially establishes in the endocervix in females, but if the infection ascends the genital tract, significant disease, including infertility, can result. Many of the mechanisms associated with chlamydial infection kinetics and disease ascension are unknown. We attempt to elucidate some of these processes by developing a novel mathematical model, using a cellular automata–partial differential equation model. We matched our model outputs to experimental data of chlamydial infection of the guinea-pig cervix and carried out sensitivity analyses to determine the relative influence of model parameters. We found that the rate of recruitment and action of innate immune cells to clear extracellular chlamydial particles and the rate of passive movement of chlamydial particles are the dominant factors in determining the early course of infection, magnitude of the peak chlamydial time course and the time of the peak. The rate of passive movement was found to be the most important factor in determining whether infection would ascend to the upper genital tract. This study highlights the importance of early innate immunity in the control of chlamydial infection and the significance of motility-diffusive properties and the adaptive immune response in the magnitude of infection and in its ascension.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A distinctive feature of Chinese test is that a Chinese document is a sequence of Chinese with no space or boundary between Chinese words. This feature makes Chinese information retrieval more difficult since a retrieved document which contains the query term as a sequence of Chinese characters may not be really relevant to the query since the query term (as a sequence Chinese characters) may not be a valid Chinese word in that documents. On the other hand, a document that is actually relevant may not be retrieved because it does not contain the query sequence but contains other relevant words. In this research, we propose a hybrid Chinese information retrieval model by incorporating word-based techniques with the traditional character-based techniques. The aim of this approach is to investigate the influence of Chinese segmentation on the performance of Chinese information retrieval. Two ranking methods are proposed to rank retrieved documents based on the relevancy to the query calculated by combining character-based ranking and word-based ranking. Our experimental results show that Chinese segmentation can improve the performance of Chinese information retrieval, but the improvement is not significant if it incorporates only Chinese segmentation with the traditional character-based approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider a hybrid model, created by coupling a continuum and an agent-based model of infectious disease. The framework of the hybrid model provides a mechanism to study the spread of infection at both the individual and population levels. This approach captures the stochastic spatial heterogeneity at the individual level, which is directly related to deterministic population level properties. This facilitates the study of spatial aspects of the epidemic process. A spatial analysis, involving counting the number of infectious agents in equally sized bins, reveals when the spatial domain is nonhomogeneous.