374 resultados para Homeostatic proliferation
Resumo:
Recent developments in networked three dimensional (3D) virtual worlds, and the proliferation of high bandwidth communications technology, have the potential to dramatically improve collaboration in the construction industry. This research project focuses on the early stages of a construction project in which the models for the project are developed and revised. The project investigates three aspects of collaboration in virtual environments: 1. The processes that enable effective collaboration using high bandwidth information communication technology (ICT); 2. The models that allow for multiple disciplines to share their views in a synchronous virtual environment; 3. The generic skills used by individuals and teams when engaging with high bandwidth information communication technology. The third aspect of the project, listed above, led by the University of Newcastle, explores the domain of People and the extent to which they contribute to the effectiveness of virtual teams. This report relates, primarily, to this aspect.
Resumo:
Recent developments in networked three dimensional (3D) virtual worlds and the proliferation of high bandwidth communications technology have the potential to dramatically improve collaboration in the construction industry. This research project focuses on the early stages of a design/construction project in which models for a project are developed and revised. We have investigated three aspects of collaboration in virtual environments: 1. The processes that enable effective collaboration using high bandwidth information communication technology (ICT); 2. The models that allow for multiple disciplines to share their views in a synchronous virtual environment; 3. The generic skills used by individuals and teams when engaging with high bandwidth information communication technology.
Resumo:
Collaborative networks have come to form a large part of the public sector’s strategy to address ongoing and often complex social problems. The relational power of networks, with its emphasis on trust, reciprocity and mutuality provides the mechanism to integrate previously dispersed and even competitive entities into a collective venture(Agranoff 2003; Agranoff and McGuire 2003; Mandell 1994; Mandell and Harrington 1999). It is argued that the refocusing of a single body of effort to a collective contributes to reducing duplication and overlap of services, maximizes increasingly scarce resources and contributes to solving intractable or 'wicked’problems (Clarke and Stewart 1997). Given the current proliferation of collaborative networks and the fact that they are likely to continue for some time, concerns with the management and leadership of such arrangements for optimal outcomes are increasingly relevant. This is especially important for public sector managers who are used to working in a top-down, hierarchical manner. While the management of networks (Agranoff and McGuire 2001, 2003), including collaborative or complex networks (Kickert et al. 1997; Koppenjan and Klijn 2004), has been the subject of considerable attention, there has been much less explicit discussion on leadership approaches in this context. It is argued in this chapter that the traditional use of the terms ‘leader’ or ‘leadership’ does not apply to collaborative networks. There are no ‘followers’ in collaborative networks or supervisor-subordinate relations. Instead there are equal, horizontal relationships that are focused on delivering systems change. In this way the emergent organizational forms such as collaborative networks challenge older models of leadership. However despite the questionable relevance of old leadership styles to the contemporary work environment, no clear alternative has come along to take its place.
Resumo:
In this study, poly (e-caprolactone) [PCL] and its collagen composite blend (PCL=Col) were fabricated to scaffolds using electrospinning method. Incorporated collagen was present on the surface of the fibers, and it modulated the attachment and proliferation of pig bone marrow mesenchymal cells (pBMMCs). Osteogenic differentiation markers were more pronounced when these cells were cultured on PCL=Col fibrous meshes, as determined by immunohistochemistry for collagen type I, osteopontin, and osteocalcin. Matrix mineralization was observed only on osteogenically induced PCL=Col constructs. Long bone analogs were created by wrapping osteogenic cell sheets around the PCL=Col meshes to form hollow cylindrical cell-scaffold constructs. Culturing these constructs under dynamic conditions enhanced bone-like tissue formation and mechanical strength.We conclude that electrospun PCL=Col mesh is a promising material for bone engineering applications. Its combination with osteogenic cell sheets offers a novel and promising strategy for engineering of tubular bone analogs.
Resumo:
Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(varepsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.
Resumo:
Application of cell-–biomaterial systems in regenerative medicine can be facilitated by their successful low temperature preservation. Vitrification, which avoids ice crystal formation by amorphous solidification, is an emerging approach to cryopreservation. Developing vitrification strategy, effective cryopreservation of alginate–fibrin beads with porcine mesenchymal stromal cells has been achieved in this study. The cell–biomaterial constructs were pre-cultured for 20 days before cryopreservation, allowing for cell proliferation and construct stabilization. Ethylene glycol (EG) was employed as the basic cryoprotectant for two equilibration solutions. Successful cryopreservation of the constructs was achieved using vitrification solution composed of penetrating (EG MW 62 Da) and non-penetrating (sucrose MW 342 Da) cryoprotectants. Stepwise procedure of introduction to and removal of cryoprotectants was brief; direct plunging into liquid nitrogen was applied. Cell viability, evaluated by combining live/death staining and confocal laser microscopy, was similar for both control and vitrified cells in the beads. No detectable damage of microstructure of cryopreserved beads was found as shown by scanning electron microscopy. Both osteogenically induced control and vitrified cells in the constructs were equally capable of mineral production and deposition. There was no statistically significant difference in metabolic activity and proliferation between both groups during the entire culture period. Our study leads to the conclusion that the developed cryopreservation protocol allowed to maintain the integrity of the beads while preserving the ability of the pig bone marrow derived mesenchymal stromal cells to proliferate and subsequently differentiate; demonstrating that vitrification is a promising approach for cryopreser-vation of “ready-to-use” cell–biomaterial constructs.
Resumo:
Height is a complex physical trait that displays strong heritability. Adult height is related to length of the long bones, which is determined by growth at the epiphyseal growth plate. Longitudinal bone growth occurs via the process of endochondral ossification, where bone forms over the differentiating cartilage template at the growth plate. Estrogen plays a major role in regulating longitudinal bone growth and is responsible for inducing the pubertal growth spurt and fusion of the epiphyseal growth plate. However, the mechanism by which estrogen promotes epiphyseal fusion is poorly understood. It has been hypothesised that estrogen functions to regulate growth plate fusion by stimulating chondrocyte apoptosis, angiogenesis and bone cell invasion in the growth plate. Another theory has suggested that estrogen exposure exhausts the proliferative capacity of growth plate chondrocytes, which accelerates the process of chondrocyte senescence, leading to growth plate fusion. The overall objective of this study was to gain a greater understanding of the molecular mechanisms behind estrogen-mediated growth and height attainment by examining gene regulation in chondrocytes and the role of some of these genes in normal height inheritance. With the heritability of height so well established, the initial hypothesis was that genetic variation in candidate genes associated with longitudinal bone growth would be involved in normal adult height variation. The height-related genes FGFR3, CBFA1, ER and CBFA1 were screened for novel polymorphisms using denaturing HPLC and RFLP analysis. In total, 24 polymorphisms were identified. Two SNPs in ER (rs3757323 C>T and rs1801132 G>C) were strongly associated with adult male height and displayed an 8 cm and 9 cm height difference between homozygous genotypes, respectively. The TC haplotype of these SNPs was associated with a 6 cm decrease in height and remarkably, no homozygous carriers of the TC haplotype were identified in tall subjects. No significant associations with height were found for polymorphisms in the FGFR3, CBFA1 or VDR genes. In the epiphyseal growth plate, chondrocyte proliferation, matrix synthesis and chondrocyte hypertrophy are all major contributors to long bone growth. As estrogen plays such a significant role in both growth and final height attainment, another hypothesis of this study was that estrogen exerted its effects in the growth plate by influencing chondrocyte proliferation and mediating the expression of chondrocyte marker genes. The examination of genes regulated by estrogen in chondrocyte-like cells aimed to identify potential regulators of growth plate fusion, which may further elucidate mechanisms involved in the cessation of linear growth. While estrogen did not dramatically alter the proliferation of the SW1353 cell line, gene expression experiments identified several estrogen regulated genes. Sixteen chondrocyte marker genes were examined in response to estrogen concentrations ranging from 10-12 M to 10-8 M over varying time points. Of the genes analysed, IHH, FGFR3, collagen II and collagen X were not readily detectable and PTHrP, GHR, ER, BMP6, SOX9 and TGF1 mRNAs showed no significant response to estrogen treatments. However, the expression of MMP13, CBFA1, BCL-2 and BAX genes were significantly decreased. Interestingly, the majority of estrogen regulated genes in SW1353 cells are expressed in the hypertrophic zone of the growth plate. Estrogen is also known to regulate systemic GH secretion and local GH action. At the molecular level, estrogen functions to inhibit GH action by negatively regulating GH signalling. GH treated SW1353 cells displayed increases in MMP9 mRNA expression (4.4-fold) and MMP13 mRNA expression (64-fold) in SW1353 cells. Increases were also detected in their respective proteins. Treatment with AG490, an established JAK2 inhibitor, blocked the GH mediated stimulation of both MMP9 and MMP13 mRNA expression. The application of estrogen and GH to SW1353 cells attenuated GH-stimulated MMP13 levels, but did not affect MMP9 levels. Investigation of GH signalling revealed that SW1353 cells have high levels of activated JAK2 and exposure to GH, estrogen, AG490 and other signalling inhibitors did not affect JAK2 phosphorylation. Interestingly, AG490 treatment dramatically decreased ERK2 signalling, although GH did stimulate ERK2 phosphorylation above control levels. AG490 also decreased CBFA1 expression, a transcription factor known to activate MMP9 and MMP13. Finally, GH and estrogen treatment increased expression of SOCS3 mRNA, suggesting that SOCS3 may regulate JAK/STAT signalling in SW1353 cells. The modulation of GH-mediated MMP expression by estrogen in SW1353 cells represents a potentially novel mechanism by which estrogen may regulate longitudinal bone growth. However, further investigation is required in order to elucidate the precise mechanisms behind estrogen and GH regulation of MMP13 expression in SW1353 cells. This study has provided additional evidence that estrogen and the ER gene are major factors in the regulation of growth and the determination of adult height. Newly identified polymorphisms in the ER gene not only contribute to our understanding of the genetic basis of human height, but may also be useful in association studies examining other complex traits. This study also identified several estrogen regulated genes and indicated that estrogen modifies the expression of genes which are primarily expressed in the hypertrophic region of the epiphyseal growth plate. Furthermore, synergistic studies incorporating GH and estrogen have revealed the ability of estrogen to attenuate the effects of GH on MMP13 expression, revealing potential pathways by which estrogen may modulate growth plate fusion, longitudinal bone growth and even arthritis.
Resumo:
Sex hormone-binding globulin (SHBG) is a homodimeric plasma glycoprotein that is the major sex steroid carrier-protein in the bloodstream and functions also as a key regulator of steroid bioavailability within target tissues, such as the prostate. Additionally, SHBG binds to prostatic cell membranes via the putative and unidentified SHBG receptor (RSHBG), activating a signal transduction pathway implicated in stimulating both proliferation and expression of prostate specific antigen (PSA) in prostate cell lines in vitro. A yeast-two hybrid assay suggested an interaction between SHBG and kallikrein-related protease (KLK) 4, which is a serine protease implicated in the progression of prostate cancer. The potential interaction between these two proteins was investigated in this PhD thesis to determine whether SHBG is a proteolytic substrate of KLK4 and other members of the KLK family including KLK3/PSA, KLK7 and KLK14. Furthermore, the effects from SHBG proteolytic degradation on SHBG-regulated steroid bioavailability and the activation of the putative RSHBG signal transduction pathway were examined in the LNCaP prostate cancer cell line. SHBG was found to be a proteolytic substrate of the trypsin-like KLK4 and KLK14 in vitro, yielding several proteolysis fragments. Both chymotrypsin-like PSA and KLK7 displayed insignificant proteolytic activity against SHBG. The kinetic parameters of SHBG proteolysis by KLK4 and KLK14 demonstrate a strong enzyme-substrate binding capacity, possessing a Km of 1.2 ± 0.7 µM and 2.1 ± 0.6 µM respectively. The catalytic efficiencies (kcat/Km) of KLK4 and KLK14 proteolysis of SHBG were 1.6 x 104 M-1s-1 and 3.8 x 104 M-1s-1 respectively, which were comparable to parameters previously reported for peptide substrates. N-terminal sequencing of the fragments revealed cleavage near the junction of the N- and C-terminal laminin globulin-like (G-like) domains of SHBG, resulting in the division of the two globulins and ultimately the full degradation of these fragments by KLK4 and KLK14 over time. Proteolytic fragments that may retain steroid binding were rapidly degraded by both proteases, while fragments containing residues beyond the steroid binding pocket were less degraded over the same period of time. Degradation of SHBG was inhibited by the divalent metal cations calcium and zinc for KLK4, and calcium, zinc and magnesium for KLK14. The human secreted serine protease inhibitors (serpins), α1-antitrypsin and α2-antiplasmin, inhibited KLK4 and KLK14 proteolysis of SHBG; α1-antichymotrypsin inhibited KLK4 but not KLK14 activity. The inhibition by these serpins was comparable and in some cases more effective than general trypsin protease inhibitors such as aprotinin and phenylmethanesulfonyl fluoride (PMSF). The binding of 5α-dihydrotestosterone (DHT) to SHBG modulated interactions with KLK4 and KLK14. Steroid-free SHBG was more readily digested by both enzymes than DHT-bound SHBG. Moreover, a binding interaction exists between SHBG and pro-KLK4 and pro-KLK14, with DHT strengthening the binding to pro-KLK4 only. The inhibition of androgen uptake by cultured prostate cancer cells, mediated by SHBG steroid-binding, was examined to assess whether SHBG proteolysis by KLK4 and KLK14 modulated this process. Proteolytic digestion eliminated the ability of SHBG to inhibit the uptake of DHT from conditioned media into LNCaP cells. Therefore, the proteolysis of SHBG by KLK4 and KLK14 increased steroid bioavailability in vitro, leading to an increased uptake of androgens by prostate cancer cells. Interestingly, different transcriptional responses of PSA and KLK2, which are androgen-regulated genes, to DHT-bounsd SHBG treatment were observed between low and high passage number LNCaP cells (lpLNCaP and hpLNCaP respectively). HpLNCaP cells treated with DHT-bound SHBG demonstrated a significant synergistic upregulation of PSA and KLK2 above DHT or SHBG treatment alone, which is similar to previously reported downstream responses from RSHBG-mediated signaling activation. As this result was not seen in lpLNCaP cells, only hpLNCaP cells were further investigated to examine the modulation of potential RSHBG activity by KLK4 and KLK14 proteolysis of SHBG. Contrary to reported results, no increase in intracellular cAMP was observed in hpLNCaP cells when treated with SHBG in the presence and absence of either DHT or estradiol. As a result, the modulation of RSHBG-mediated signaling activation could not be determined. Finally, the identification of the RSHBG from both breast (MCF-7) and prostate cancer (LNCaP) cell lines was attempted. Fluorescently labeled peptides corresponding to the putative receptor binding domain (RBD) of SHBG were shown to be internalized by MCF-7 cells. Crosslinking of the RBD peptide to the cell surfaces of both MCF-7 and LNCaP cells, demonstrated the interaction of the peptide with several targets. These targets were then captured using RBD peptides synthesized onto a hydrophilic scaffold and analysed by mass spectrometry. The samples captured by the RBD peptide returned statistically significantly matches for cytokeratin 8, 18 and 19 as well as microtubule-actin crosslinking factor 1, which may indicate a novel interaction between SHBG and these proteins, but ultimately failed to detect a membrane receptor potentially responsible for the putative RSHBG-mediated signaling. This PhD project has reported the proteolytic processing of SHBG by two members of the kallikrein family, KLK4 and KLK14. The effect of SHBG proteolysis by KLK4 and KLK14 on RSHBG-mediated signaling activation was unable to be determined as the reported signal transduction pathway was not activated after treatment with SHBG, in combination with either DHT or estradiol. However, the digestion of SHBG by these two proteases positively regulated androgen bioavailability to prostate cancer cells in vitro. The increased uptake of androgens is deleterious in prostate cancer due to the promotion of proliferation, metastasis, invasion and the inhibition of apoptosis. The increased bioavailability of androgens, from SHBG proteolysis by KLK4 and KLK14, may therefore promote both carcinogenesis and progression of prostate cancer. Finally, this information may contribute to the development of therapeutic treatment strategies for prostate cancer by inhibiting the proteolysis of SHBG, by KLK4 and KLK14, to prevent the increased uptake of androgens by hormone-dependent cancerous tissues.
Resumo:
Development of an effective preservation strategy to fulfill off-the-shelf availability of tissue-engineered constructs (TECs) is demanded for realizing their clinical potential. In this study, the feasibility of vitrification, ice-free cryopreservation, for precultured ready-to-use TECs was evaluated. To prepare the TECs, bone marrow-derived porcine mesenchymal stromal cells (MSCs) were seeded in polycaprolactone-gelatin nanofibrous scaffolds and cultured for 3 weeks before vitrification treatment. The vitrification strategy developed, which involved exposure of the TECs to low concentrations of cryoprotectants followed by a vitrification solution and sterile packaging in a pouch with its subsequent immersion directly into liquid nitrogen, was accomplished within 11min. Stepwise removal of cryoprotectants, after warming in a 38 degrees C water bath, enabled rapid restoration of the TECs. Vitrification did not impair microstructure of the scaffold or cell viability. No significant differences were found between the vitrified and control TECs in cellular metabolic activity and proliferation on matched days and in the trends during 5 weeks of continuous culture postvitrification. Osteogenic differentiation ability in vitrified and control groups was similar. In conclusion, we have developed a time- and cost-efficient cryopreservation method that maintains integrity of the TECs while preserving MSCs viability and metabolic activity, and their ability to differentiate.
Resumo:
There is ongoing and wide-ranging dispute over the proliferation of childhood behaviour disorders. In particular, the veracity of the category Attention Deficit Hyperactivity Disorder (ADHD), has been the subject of considerable scepticism. With no end to the debate in sight, it will be argued here that the problem might effectively be approached, not by addressing the specific features of ADHD itself, but rather by a philosophical analysis of one of the terms around which this entire problem revolves: that is, the notion of truth. If we state: “It is true that ADHD is a real disorder”, what exactly do we mean? Do we mean that it is an objective fact of nature? Do we mean that it fits seamlessly with other sets of ideas and explanations? Or do we simply mean that it works as an idea in a practical sense? This paper will examine the relationship between some of the dominant models of truth, and the assertions made by those in the field of ADHD. Specifically, the paper will contrast the claim that ADHD is a real disorder, with the claim that ADHD is a product of social governance. The intention is, first, to place some significant qualifications upon the validity of the truth-claims made by ADHD advocates, and second, to re-emphasise the potential and promise of philosophical investigation in providing productive new ways of thinking about some obstinate and seemingly intractable educational problems.
Resumo:
The proliferation of innovative schemes to address climate change at international, national and local levels signals a fundamental shift in the priority and role of the natural environment to society, organizations and individuals. This shift in shared priorities invites academics and practitioners to consider the role of institutions in shaping and constraining responses to climate change at multiple levels of organisations and society. Institutional theory provides an approach to conceptualising and addressing climate change challenges by focusing on the central logics that guide society, organizations and individuals and their material and symbolic relationship to the environment. For example, framing a response to climate change in the form of an emission trading scheme evidences a practice informed by a capitalist market logic (Friedland and Alford 1991). However, not all responses need necessarily align with a market logic. Indeed, Thornton (2004) identifies six broad societal sectors each with its own logic (markets, corporations, professions, states, families, religions). Hence, understanding the logics that underpin successful –and unsuccessful– climate change initiatives contributes to revealing how institutions shape and constrain practices, and provides valuable insights for policy makers and organizations. This paper develops models and propositions to consider the construction of, and challenges to, climate change initiatives based on institutional logics (Thornton and Ocasio 2008). We propose that the challenge of understanding and explaining how climate change initiatives are successfully adopted be examined in terms of their institutional logics, and how these logics evolve over time. To achieve this, a multi-level framework of analysis that encompasses society, organizations and individuals is necessary (Friedland and Alford 1991). However, to date most extant studies of institutional logics have tended to emphasize one level over the others (Thornton and Ocasio 2008: 104). In addition, existing studies related to climate change initiatives have largely been descriptive (e.g. Braun 2008) or prescriptive (e.g. Boiral 2006) in terms of the suitability of particular practices. This paper contributes to the literature on logics by examining multiple levels: the proliferation of the climate change agenda provides a site in which to study how institutional logics are played out across multiple, yet embedded levels within society through institutional forums in which change takes place. Secondly, the paper specifically examines how institutional logics provide society with organising principles –material practices and symbolic constructions– which enable and constrain their actions and help define their motives and identity. Based on this model, we develop a series of propositions of the conditions required for the successful introduction of climate change initiatives. The paper proceeds as follows. We present a review of literature related to institutional logics and develop a generic model of the process of the operation of institutional logics. We then consider how this is applied to key initiatives related to climate change. Finally, we develop a series of propositions which might guide insights into the successful implementation of climate change practices.
Ghrelin gene-related peptides : multifunctional endocrine/autocrine modulators in health and disease
Resumo:
Ghrelin is a multi-functional peptide hormone which affects various processes including growth hormone and insulin release, appetite regulation, gut motility, metabolism and cancer cell proliferation. Ghrelin is produced in the stomach and in other normal and pathological cell types. It may act as an endocrine or autocrine/paracrine factor. The ghrelin gene encodes a precursor protein, preproghrelin, from which ghrelin and other potentially active peptides are derived by alternative mRNA splicing and/or proteolytic processing. The metabolic role of the peptide obestatin, derived from the preproghrelin C-terminal region, is controversial. However, it has direct effects on cancer cell proliferation. The regulation of ghrelin expression and the mechanisms through which the peptide products arise are unclear. We have recently re-examined the organisation of the ghrelin gene and identified several novel exons and transcripts. One transcript, which lacks the ghrelin-coding region of preproghrelin, contains the coding sequence of obestatin. Furthermore, we have identified an overlapping gene on the antisense strand of ghrelin, GHRLOS, which generates transcripts that may function as non-coding regulatory RNAs or code for novel, short bioactive peptides. The identification of these novel ghrelin-gene related transcripts and peptides raises critical questions regarding their physiological function and their role in obesity, diabetes and cancer.
Resumo:
The efficacy of exercise to promote weight loss could potentially be undermined by its influence on explicit or implicit processes of liking and wanting for food which in turn alter food preference. The present study was designed to examine hedonic and homeostatic mechanisms involved in the acute effects of exercise on food intake. 24 healthy female subjects were recruited to take part in two counterbalanced activity sessions; 50 min of high intensity (70% max heart rate) exercise (Ex) or no exercise (NEx). Subjective appetite sensations, explicit and implicit hedonic processes, food preference and energy intake (EI) were measured immediately before and after each activity session and an ad libitum test meal. Two groups of subjects were identified in which exercise exerted different effects on compensatory EI and food preference. After exercise, compensators (C) increased their EI, rated the food to be more palatable, and demonstrated increased implicit wanting. Compensators also showed a preference for high-fat sweet food compared with non-compensators (NC), independent of the exercise intervention. Exercise-induced changes in the hedonic response to food could be an important consideration in the efficacy of using exercise as a means to lose weight. An enhanced implicit wanting for food after exercise may help to explain why some people overcompensate during acute eating episodes. Some individuals could be resistant to the beneficial effects of exercise due to a predisposition to compensate for exercise-induced energy expenditure as a result of implicit changes in food preferences.
Resumo:
The social construction of sexuality over the past one hundred and fifty years has created a dichotomy between heterosexual and non-heterosexual identities that essentially positions the former as “normal” and the latter as deviant. Even Kinsey’s and others’ work on the continuum of sexualities did little to alter the predominantly heterosexist perception of the non-heterosexual as “other” (Kinsey, Pomeroy and Martin 2007; Esterberg 2006; Franceour and Noonan 2007). Some political action and academic work is beginning to challenge such perceptions. Even some avenues of social interaction, such as the recent proliferation of online communities, may also challenge such views, or at least contribute to their being rethought in some ways. This chapter explores a specific kind of online community devoted to fan fiction, specifically homoerotic – or what is known colloquially as “slash” – fan fiction. Fan fiction is fiction, published on the internet, and written by fans of well-known books and television shows, using the characters to create new and varied plots. “Slash” refers to the pairing of two of the male characters in a romantic relationship, and the term comes from the punctuation mark dividing the named pair as, for example, Spock/Kirk from the Star Trek television series. Although there are some slash fan-fiction stories devoted to female-female relationships – called “femmeslash” – the term “slash” generally refers to male-male relationships, and will be utilized throughout this chapter, given that the research discussed focuses on communities centered around one such male pairing.
Resumo:
There is wide agreement that in order to manage the increasingly complex and uncertain tasks of business, government and community, organizations can no longer operate in supreme isolation, but must develop a more networked approach. Networks are not ‘business as usual’. Of particular note is what has been referred to as collaborative networks. Collaborative networks now constitute a significant part of our institutional infrastructure. A key driver for the proliferation of these multiorganizational arrangements is their ability to facilitate the learning and knowledge necessary to survive or to respond to increasingly complex social issues In this regard the emphasis is on the importance of learning in networks. Learning applies to networks in two different ways. These refer to the kinds of learning that occur as part of the interactive processes of networks. This paper looks at the importance of these two kinds of learning in collaborative networks. The first kind of learning relates to networks as learning networks or communities of practice. In learning networks people exchange ideas with each other and bring back this new knowledge for use in their own organizations. The second type of learning is referred to as network learning. Network learning refers to how people in collaborative networks learn new ways of communicating and behaving with each other. Network learning has been described as transformational in terms of leading to major systems changes and innovation. In order to be effective, all networks need to be involved as learning networks; however, collaborative networks must also be involved in network learning to be effective. In addition to these two kinds of learning in collaborative networks this paper also focuses on the importance of how we learn about collaborative networks. Maximizing the benefits of working through collaborative networks is dependent on understanding their unique characteristics and how this impacts on their operation. This requires a new look at how we specifically teach about collaborative networks and how this is similar to and/or different from how we currently teach about interorgnizational relations.