63 resultados para Fruit Drinks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oil palm empty fruit bunch (EFB) is a readily available, lignocellulosic biomass that has potential to be utilized as a carbon substrate for microbial oil production. In order to evaluate the production of microbial oil from EFB, a technical study was performed through the cultivation of oleaginous micro-organisms (Rhodotorula mucilaginosa, Aspergillus oryzae, and Mucor plumbeus) on EFB hydrolyzates. EFB hydrolyzates were prepared through dilute acid pre-treatment of the biomass, where the liquid fraction of pre-treatment was detoxified and used as an EFB liquid hydrolyzate (EFBLH). The solid residue was enzymatically hydrolyzed prior to be used as an EFB enzymatic hydrolyzate (EFBEH). The highest oil concentrations were obtained from M. plumbeus (1.9 g/L of oil on EFBLH and 4.7 g/L of oil on EFBEH). In order to evaluate the feasibility of large-scale microbial oil production, a techno-economic study was performed based on the oil yields of M. plumbeus per hectare of plantation, followed by the estimation of the feedstock cost for oil production. Other oil palm biomasses (frond and trunk) were also included in this study, as it could potentially improve the economics of large-scale microbial oil production. Microbial oil from oil palm biomasses was estimated to potentially increase oil production in the palm oil industry up to 25%, at a cheaper feedstock cost. The outcome of this study demonstrates the potential integration of microbial oil production from oil palm biomasses with existing palm oil industry (biodiesel, food and oleochemicals production), that could potentially enhance sustainability and profitability of microbial oil production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bactrocera tryoni (Froggatt) is Australia's major horticultural insect pest, yet monitoring females remains logistically difficult. We trialled the ‘Ladd trap’ as a potential female surveillance or monitoring tool. This trap design is used to trap and monitor fruit flies in countries other (e.g. USA) than Australia. The Ladd trap consists of a flat yellow panel (a traditional ‘sticky trap’), with a three dimensional red sphere (= a fruit mimic) attached in the middle. We confirmed, in field-cage trials, that the combination of yellow panel and red sphere was more attractive to B. tryoni than the two components in isolation. In a second set of field-cage trials, we showed that it was the red-yellow contrast, rather than the three dimensional effect, which was responsible for the trap's effectiveness, with B. tryoni equally attracted to a Ladd trap as to a two-dimensional yellow panel with a circular red centre. The sex ratio of catches was approximately even in the field-cage trials. In field trials, we tested the traditional red-sphere Ladd trap against traps for which the sphere was painted blue, black or yellow. The colour of sphere did not significantly influence trap efficiency in these trials, despite the fact the yellow-panel/yellow-sphere presented no colour contrast to the flies. In 6 weeks of field trials, over 1500 flies were caught, almost exactly two-thirds of them being females. Overall, flies were more likely to be caught on the yellow panel than the sphere; but, for the commercial Ladd trap, proportionally more females were caught on the red sphere versus the yellow panel than would be predicted based on relative surface area of each component, a result also seen the field-cage trial. We determined that no modification of the trap was more effective than the commercially available Ladd trap and so consider that product suitable for more extensive field testing as a B. tryoni research and monitoring tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frugivorous 'true' fruit fly, Bactrocera tryoni (Queensland fruit fly), is presumed to have a non-resourced-based lek mating system. This is largely untested, and contrary data exists to suggest Bactrocera tryoni may have a resource-based mating system focused on fruiting host plants. We tested the mating system of Bactrocera tryoni, and its close sibling Bactrocera neohumeralis, in large field cages using laboratory reared flies. We used observational experiments that allowed us to determine if: - (i) mating pairs were aggregated or non-aggregated; - (ii) mating system was resource or non-resource based; - (iii) flies utilised possible landmarks (tall trees over short) as mate-rendezvous sites, and; - (iv) males called females from male-dominated leks. We recorded nearly 250 Bactrocera tryoni mating pairs across all experiments, revealing that: - (i) mating pairs were aggregated; - (ii) mating nearly always occurred in tall trees over short; - (iii) mating was non-resource based, and; - (iv) that males and females arrived at the mate-rendezvous site together with no evidence that males preceded females. Bactrocera neohumeralis copulations were much more infrequent (only 30 mating pairs in total), but for those pairs there was a similar preference for tall trees and no evidence of a resource-based mating system. Some aspects of Bactrocera tryoni mating behaviour align with theoretical expectations of a lekking system, but others do not. Until evidence for unequivocal female choice can be provided (as predicted under a true lek), the mating system of Bactrocera tryoni is best described as a non-resource based, aggregation system for which we also have evidence that land-marking may be involved. This article is protected by copyright. All rights reserved.