66 resultados para Fairchild Tropical Garden.
Resumo:
This thesis makes a significant contribution to knowledge and understanding of 'Human Travel Behaviour' in relation to transportation research. It holds some important merits that have not been proposed before. It develops a new, comprehensive and meaningful relationship that includes bus transit ridership change due to weather variables, seasonality and transit quality of service within a single daily ridership rate estimation model. The research incorporated both temporal and spatial influences on ridership within a modelling structure, named as the Nested Model Structure. It provides a complete picture of ridership variation across the sub-tropical city of Brisbane, Australia.
Resumo:
Intensively managed pastures in subtropical Australia under dairy production are nitrogen (N) loaded agro-ecosystems, with an increased pool of N available for denitrification. The magnitude of denitrification losses and N2:N2O partitioning in these agro-ecosystems is largely unknown, representing a major uncertainty when estimating total N loss and replacement. This study investigated the influence of different soil moisture contents on N2 and N2O emissions from a subtropical dairy pasture in Queensland, Australia. Intact soil cores were incubated over 15 days at 80% and 100% water-filled pore space (WFPS), after the application of 15N labelled nitrate, equivalent to 50 kg N ha−1. This setup enabled the direct quantification of N2 and N2O emissions following fertilisation using the 15N gas flux method. The main product of denitrification in both treatments was N2. N2 emissions exceeded N2O emissions by a factor of 8 ± 1 at 80% WFPS and a factor of 17 ± 2 at 100% WFPS. The total amount of N-N2 lost over the incubation period was 21.27 kg ± 2.10 N2-N ha−1 at 80% WFPS and 25.26 kg ± 2.79 kg ha−1 at 100% WFPS respectively. N2 emissions remained high at 100% WFPS, while related N2O emissions decreased. At 80% WFPS, N2 emissions increased constantly over time while N2O fluxes declined. Consequently, N2/(N2 + N2O) product ratios increased over the incubation period in both treatments. N2/(N2 + N2O) product ratios responded significantly to soil moisture, confirming WFPS as a key driver of denitrification. The substantial amount of fertiliser lost as N2 reveals the agronomic significance of denitrification as a major pathway of N loss for sub-tropical pastures at high WFPS and may explain the low fertiliser N use efficiency observed for these agro-ecosystems.
Resumo:
Nitrogen fertiliser is a major source of atmospheric N2O and over recent years there is growing evidence for a non-linear, exponential relationship between N fertiliser application rate and N2O emissions. However, there is still high uncertainty around the relationship of N fertiliser rate and N2O emissions for many cropping systems. We conducted year-round measurements of N2O emission and lint yield in four N rate treatments (0, 90, 180 and 270 kg N ha-1) in a cotton-fallow rotation on a black vertosol in Australia. We observed a nonlinear exponential response of N2O emissions to increasing N fertiliser rates with cumulative annual N2O emissions of 0.55 kg N ha-1, 0.67kg N ha-1, 1.07 kg N ha-1 and 1.89 kg N ha-1 for the four respective N fertiliser rates while no N response to yield occurred above 180N. The N fertiliser induced annual N2O EF factors increased from 0.13% to 0.29% and 0.50% for the 90N, 180N and 270N treatments respectively, significantly lower than the IPCC Tier 1 default value (1.0 %). This non-linear response suggests that an exponential N2O emissions model may be more appropriate for use in estimating emission of N2O from soils cultivated to cotton in Australia. It also demonstrates that improved agricultural N management practices can be adopted in cotton to substantially reduce N2O emissions without affecting yield potential.
Resumo:
Description of the work Garden of Shrinking Violets is a collection of six half scale garments and three illustrations, continuing the practice-led research project into design for disassembly, developed in the work Shrinking Violets (2015). All garments are constructed in laser cut modules that enable the items to be reassembled in new combinations. The project extended the materials used to include ahimsa (peace) silk, silk organza and silk twill. The pattern pieces have internal laser cut grids of 5mm circles, allowing the textiles to be layered, threaded and knotted to achieve rich embellished surfaces that play with the transparencies and colour overlays of the sheer and opaque silks. Research Background Conceptually grounded in design for sustainability, the aim of the work is to develop approaches to garment construction that could allow users to engage with the garments by adding, removing and reconfiguring elements. This approach to design considers the use and end-of-life phases of the transient fashion garment through considering how the garments can be later disassembled. Research Contribution This construction process is unique in being not only a patterning device but also integral to the garment’s construction. This work sits at the intersection of technical design and craft: the laser cutting and technical approach to developing new forms of garment construction is coupled with the artisanal approach of hand-knotting, a reference to traditional quilting techniques, as a method to layer and pattern the textiles. The technique developed in Shrinking Violets was extended to experiment with different grid structures, knotting devices, and decorative fringing. The result is a proposed construction system in which the laser cut grid and knotting form a decorative patterning device, but are also integral to the garments’ construction. Research Significance Garden of Shrinking Violets was exhibited at artisan gallery’s Ivory Street window, Brisbane, January 18 – February 28 2016. The work was selected by artisan gallery exhibition curators. As part of artisan gallery’s public programming, the author participated in a panel discussion: ‘Constructive conversations: deconstruction and reconstruction in contemporary craft and design’ with jeweller Elizabeth Shaw and visual arts lecturer Courtney Pedersen, 20 February 2016. Photography used in illustrations by Jonathan Rae
Resumo:
Cool roof coatings have a beneficial impact on reducing the heat load of a range of building types, resulting in reduced cooling energy loads. This study seeks to understand the extent to which cool roof coatings could be used as a residential demand side management (DSM) strategy for retrofitting existing housing in a constrained network area in tropical Australia where peak electrical demand is heavily influenced by residential cooling loads. In particular this study seeks to determine whether simulation software used for building regulation purposes can provide networks with the ‘impact certainty’ required by their DSM principles. The building simulation method is supported by a field experiment. Both numerical and experimental data confirm reductions in total consumption (kWh) and energy demand (kW). The nature of the regulated simulation software, combined with the diverse nature of residential buildings and their patterns of occupancy, however, mean that simulated results cannot be extrapolated to quantify benefits to a broader distribution network. The study suggests that building data gained from regulatory simulations could be a useful guide for potential impacts of widespread application of cool roof coatings in this region. The practical realization of these positive impacts, however, would require changes to the current business model for the evaluation of DSM strategies. The study provides seven key recommendations that encourage distribution networks to think beyond their infrastructure boundaries, recognising that the broader energy system also includes buildings, appliances and people.