63 resultados para Factor-i
Resumo:
On the basis of local data, we write in support of the conclusions of Smith and Ahern that current Pharmaceu- tical Benefits Scheme (PBS) criteria for tumour necrosis factor (TNF)-a inhibitors in ankylosing spondylitis (AS) are not evidence-based. 1 As a prerequisite to the appropriate use of biological therapy in AS, three aspects of the disease need to be defined: (i) diagnosis, (ii) activity and (iii) therapeutic failure (Table 1)....
Resumo:
Objectives. To determine whether genetic polymorphisms in or near the transforming growth factor β1 (TGFB1) locus were associated d with susceptibility to or severity of ankylosing spondylitis (AS). Methods. Five intragenic single-nucleotide polymorphisms (SNP) and three microsatellite markers flanking the TGFB1 locus were genotyped. Seven hundred and sixty-two individuals from 184 multiplex families were genotyped for the microsatellite markers and two of the promoter SNPs. One thousand and two individuals from 212 English and 170 Finnish families with AS were genotyped for all five intragenic SNPs. A structured questionnaire was used to assess the age of symptom onset, disease duration and disease severity scores, including the BASDAI (Bath Ankylosing Spondylitis Disease Activity Index) and BASFI (Bath Ankylosing Spondylitis Functional Index). Results. A weak association was noted between the rare TGFB1 + 1632 T allele and AS in the Finnish population (P = 0.04) and in the combined data set (P = 0.03). No association was noted between any other SNPs or SNP haplotype and AS, even among those families with positive non-parametric linkage scores. The TGFB1 +1632 polymorphism was also associated with a younger age of symptom onset (English population, allele 2 associated with age of onset greater by 4.2 yr, P = 0.05; combined data set, allele 2 associated with age of onset greater by 3.2 yr, P = 0.02). A haplotype of coding region SNPs (TGFB1 +869/ +915+1632 alleles 2/1/2) was associated with age of symptom onset in both the English parent-case trios and the combined data set (English data set, haplotype 2/1/2 associated with age of onset greater by 4.9 yr, P = 0.03; combined data set, haplotype 2/1/2 associated with greater age of onset by 4.2 yr, P = 0.006). Weak linkage with AS susceptibility was noted and the peak LOD score was 1.3 at distance 2 cM centromeric to the TGFB1 gene. No other linkage or association was found between quantitative traits and the markers. Conclusion. This study suggests that the polymorphisms within the TGFB1 gene play at most a small role in AS and that other genes encoded on chromosome 19 are involved in susceptibility to the disease.
Resumo:
Uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infection (UTI) in humans. For the successful colonisation of the human urinary tract, UPEC employ a diverse collection of secreted or surface-exposed virulence factors including toxins, iron acquisition systems and adhesins. In this study, a comparative proteomic approach was utilised to define the UPEC pan and core surface proteome following growth in pooled human urine. Identified proteins were investigated for subcellular origin, prevalence and homology to characterised virulence factors. Fourteen core surface proteins were identified, as well as eleven iron uptake receptor proteins and four distinct fimbrial types, including type 1, P, F1C/S and a previously uncharacterised fimbrial type, designated UCA-like (UCL) fimbriae in this study. These pathogenicity island (PAI)-associated fimbriae are related to UCA fimbriae of Proteus mirabilis, associated with UPEC and exclusively found in members of the E. coli B2 and D phylogroup. We further demonstrated that UCL fimbriae promote significant biofilm formation on abiotic surfaces and mediate specific attachment to exfoliated human uroepithelial cells. Combined, this study has defined the surface proteomic profiles and core surface proteome of UPEC during growth in human urine and identified a new type of fimbriae that may contribute to UTI.