72 resultados para FIRST-ORDER TABLEAUX
Resumo:
The behavior of sprayed tricyclazole in rice paddy lysimeters was studied. Tricyclazole residues were measured from rice leaves and paddy water after tricyclazole spraying in paddy lysimeters. The rate of photolysis and hydrolysis of tricyclazole on the surface of rice leaves was also determined in a laboratory experiment. Tricyclazole was extracted from leaf and water samples and determined by liquid chromatography with UV or mass spectrometry. The hydrolysis half-lives of tricyclazole on rice leaves were 11.9 and 5.1 d for the formulated product and standard, respectively. The photolysis half-lives were longer, 16.4 d for the formulated product and 20.9 d for the standard. In the paddy lysimeter, tricyclazole dissipation on leaves involved either biphasic first-order kinetics or single-phase first-order kinetics, depending on the rainfall pattern. Half-lives of tricyclazole on lysimeter rice leaves were from 3.0 to 5.7 d. The dissipation of tricyclazole in paddy water followed single-phase first-order kinetics with half-lives ranging from 2.1 to 5.0 d.
Resumo:
Gac fruits were physically measured and stored under ambient conditions for up to 2 weeks to observe changes in carotenoid contents (lycopene and beta carotene) in its aril. Initial concentrations in the aril of lycopene were from 2.378 mg/g fresh weight (FW) to 3.728 mg/g FW and those of beta carotene were from 0.257 to 0.379 mg/g FW. Carotenoid concentrations in the aril remained stable after 1 week but sharply declined after 2 weeks of storage. Gac oil, pressed from gac aril, has similar concentrations of lycopene and beta carotene (2.436 and 2.592 mg/g, respectively). Oil was treated with 0.02% of butylated hydroxytoluene, or with a stream of nitrogen or untreated then stored in the dark for up to 15 or 19 weeks under different temperatures (5 °C, ambient, 45 and 60 °C). Lycopene and beta carotene in control gac oil degraded following the first-order kinetic model. The degradation rate of lycopene and beta carotene in the treated oil samples were lower than that in the control oil but the first-order kinetic was not always followed. However, both lycopene and beta carotene degraded quickly in gac oil with the first-order kinetic under high temperature conditions (45 and 60 °C) regardless of the treatments used. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
Experiments were conducted to determine the fate of bensulfuron-methyl (BSM) and imazosulfuron (IMS) under paddy conditions. Initially, laboratory experiments were conducted and the photolysis half-lives of the two herbicides were found to be much shorter than their hydrolysis half-lives in aqueous solutions. In the aerobic water–soil system, dissipation followed first-order kinetics with water half-lives of 9.1 and 11.0 days and soil half-lives of 12.4 and 18.5 days (first phase) and 35.0 and 44.1 days (second phase) for bensulfuron-methyl and imazosulfuron, respectively. However, the anaerobic soil half-lives were only 12.7 and 9.8 days for BSM and IMS, respectively. The values of K d were determined to be 16.0 and 13.8 for BSM and IMS, respectively. Subsequent field measurements for the two herbicides revealed that dissipation of both herbicides in paddy water involved biphasic first-order kinetics, with the dissipation rates in the first phase being much faster than those in the second phase. The dissipation of bensulfuron-methyl and imazosulfuron in the paddy surface soil were also followed biphasic first-order kinetics. These results were then used as input parameters for the PCPF-1 model to simulate the fate and transport of BSM and IMS in the paddy environment (water and 1-cm surface soil layer). The measured and simulated values agreed well and the mass balance error during the simulation period was −1.2 and 2.8% of applied pesticide, respectively, for BSM and IMS.
Resumo:
The stability of five illicit drug markers in wastewater was tested under different sewer conditions using laboratory-scale sewer reactors. Wastewater was spiked with deuterium labelled isotopes of cocaine, benzoyl ecgonine, methamphetamine, MDMA and 6-acetyl morphine to avoid interference from the native isotopes already present in the wastewater matrix. The sewer reactors were operated at 20 °C and pH 7.5, and wastewater was sampled at 0, 0.25, 0.5, 1, 2, 3, 6, 9 and 12 h to measure the transformation/degradation of these marker compounds. The results showed that while methamphetamine, MDMA and benzoyl ecgonine were stable in the sewer reactors, cocaine and 6-acetyl morphine degraded quickly. Their degradation rates are significantly higher than the values reportedly measured in wastewater alone (without biofilms). All the degradation processes followed first order kinetics. Benzoyl ecgonine and morphine were also formed from the degradation of cocaine and 6-acetyl morphine, respectively, with stable formation rates throughout the test. These findings suggest that, in sewage epidemiology, it is essential to have relevant information of the sewer system (i.e. type of sewer, hydraulic retention time) in order to accurately back-estimate the consumption of illicit drugs. More research is required to look into detailed sewer conditions (e.g. temperature, pH and ratio of biofilm area to wastewater volume among others) to identify their effects on the fate of illicit drug markers in sewer systems.
Resumo:
Creatinine was proposed to be used as a population normalising factor in sewage epidemiology but its stability in the sewer system has not been assessed. This study thus aimed to evaluate the fate of creatinine under different sewer conditions using laboratory sewer reactors. The results showed that while creatinine was stable in wastewater only, it degraded quickly in reactors with the presence of sewer biofilms. The degradation followed first order kinetics with significantly higher rate in rising main condition than in gravity sewer condition. Additionally, daily loads of creatinine were determined in wastewater samples collected on Census day from 10 wastewater treatment plants around Australia. The measured loads of creatinine from those samples were much lower than expected and did not correlate with the populations across the sampled treatment plants. The results suggested that creatinine may not be a suitable biomarker for population normalisation purpose in sewage epidemiology, especially in sewer catchment with high percentage of rising mains.
Resumo:
The fate and transport of tricyclazole and imidacloprid in paddy plots after nursery-box application was monitored. Water and surface soil samples were collected over a period of 35 days. Rates of dissipation from paddy waters and soils were also measured. Dissipation of the two pesticides from paddy water can be described by first-order kinetics. In the soil, only the dissipation of imidacloprid fitted to the simple first-order kinetics, whereas tricyclazole concentrations fluctuated until the end of the monitoring period. Mean half-life (DT50) values for tricyclazole were 11.8 and 305 days, respectively, in paddy water and surface soil. The corresponding values of imidacloprid were 2.0 and 12.5 days, respectively, in water and in surface soil. Less than 0.9% of tricyclazole and 0.1% of imidacloprid were lost through runoff during the monitoring period even under 6.3 cm of rainfall. The pesticide formulation seemed to affect the environmental fate of these pesticides when these results were compared to those of other studies.
Resumo:
The method of generalized estimating equation-, (GEEs) has been criticized recently for a failure to protect against misspecification of working correlation models, which in some cases leads to loss of efficiency or infeasibility of solutions. However, the feasibility and efficiency of GEE methods can be enhanced considerably by using flexible families of working correlation models. We propose two ways of constructing unbiased estimating equations from general correlation models for irregularly timed repeated measures to supplement and enhance GEE. The supplementary estimating equations are obtained by differentiation of the Cholesky decomposition of the working correlation, or as score equations for decoupled Gaussian pseudolikelihood. The estimating equations are solved with computational effort equivalent to that required for a first-order GEE. Full details and analytic expressions are developed for a generalized Markovian model that was evaluated through simulation. Large-sample ".sandwich" standard errors for working correlation parameter estimates are derived and shown to have good performance. The proposed estimating functions are further illustrated in an analysis of repeated measures of pulmonary function in children.
Resumo:
Students with disruptive behaviour in the Australian state of New South Wales are increasingly being educated in separate “behaviour” schools. There is however surprisingly little research on how students view these settings, or indeed the mainstream schools from which they were excluded. To better understand excluded students’ current and past educational experiences, we interviewed 33 boys, aged between 9 and 16 years of age, who were enrolled in separate special schools for students with disruptive behaviour. Analyses reveal that the majority of participants began disliking school in the early years due to difficulties with school work and teacher conflict. Interestingly, while most indicated that they preferred the behaviour school, more than half still wanted to return to their old school. It is therefore clear that separate special educational settings are not a solution to disruptive behaviour in mainstream schools. Whilst these settings do fulfil a function for some students, the preferences of the majority of boys suggest that “mainstream” school reform is of first order importance.
Resumo:
The Road Safety Remuneration Act 2012 (Cth) (the Act) explicitly enables the Road Safety Remuneration Tribunal to make orders that can impose binding requirements on all the participants in the road transport supply chain, including consignors and consignees at the apex the chain, for the pay and safety of both employee and independent contractor drivers. The tribunal is also specifically empowered to make enforceable orders to reduce or remove remuneration related incentives and pressures that contribute to unsafe work practices in the road transport industry. Recently the tribunal handed down its first order. The article considers whether, and the degree to which, the tribunal has been willing to exercise its explicit power to impose enforceable obligations on consignors and consignees — such as large supermarket chains — at the apex of road transport supply chains. It examines the substance and extent of the obligations imposed by the tribunal, including whether the tribunal has exercised the full range of powers vested in it by the Act. We contend that the tribunal’s first order primarily imposes obligations on direct work providers and drivers without making large, powerful consignors and consignees substantively responsible for driver pay and safety. We argue that the tribunal’s first order could have more comprehensively fulfilled the objectives of the Act by more directly addressing the root causes of low pay and poor safety in the road transport industry.
Resumo:
This study reports an investigation of the ion exchange treatment of sodium chloride solutions in relation to use of resin technology for applications such as desalination of brackish water. In particular, a strong acid cation (SAC) resin (DOW Marathon C) was studied to determine its capacity for sodium uptake and to evaluate the fundamentals of the ion exchange process involved. Key questions to answer included: impact of resin identity; best models to simulate the kinetics and equilibrium exchange behaviour of sodium ions; difference between using linear least squares (LLS) and non-linear least squares (NLLS) methods for data interpretation; and, effect of changing the type of anion in solution which accompanied the sodium species. Kinetic studies suggested that the exchange process was best described by a pseudo first order rate expression based upon non-linear least squares analysis of the test data. Application of the Langmuir Vageler isotherm model was recommended as it allowed confirmation that experimental conditions were sufficient for maximum loading of sodium ions to occur. The Freundlich expression best fitted the equilibrium data when analysing the information by a NLLS approach. In contrast, LLS methods suggested that the Langmuir model was optimal for describing the equilibrium process. The Competitive Langmuir model which considered the stoichiometric nature of ion exchange process, estimated the maximum loading of sodium ions to be 64.7 g Na/kg resin. This latter value was comparable to sodium ion capacities for SAC resin published previously. Inherent discrepancies involved when using linearized versions of kinetic and isotherm equations were illustrated, and despite their widespread use, the value of this latter approach was questionable. The equilibrium behaviour of sodium ions form sodium fluoride solution revealed that the sodium ions were now more preferred by the resin compared to the situation with sodium chloride. The solution chemistry of hydrofluoric acid was suggested as promoting the affinity of the sodium ions to the resin.
Resumo:
Coal seam gas operations produce significant quantities of associated water which often require demineralization. Ion exchange with natural zeolites has been proposed as a possible approach. The interaction of natural zeolites with solutions of sodium chloride and sodium bicarbonate in addition to coal seam gas water is not clear. Hence, we investigated ion exchange kinetics, equilibrium, and column behaviour of an Australian natural zeolite. Kinetic tests suggested that the pseudo first order equation best simulated the data. Intraparticle diffusion was part of the rate limiting step and more than one diffusion process controlled the overall rate of sodium ion uptake. Using a constant mass of zeolite and variable concentration of either sodium chloride or sodium bicarbonate resulted in a convex isotherm which was fitted by a Langmuir model. However, using a variable mass of zeolite and constant concentration of sodium ions revealed that the exchange of sodium ions with the zeolite surface sites was in fact unfavourable. Sodium ion exchange from bicarbonate solutions (10.3 g Na/kg zeolite) was preferred relative to exchange from sodium chloride solutions (6.4 g Na/kg zeolite). The formation of calcium carbonate species was proposed to explain the observed behaviour. Column studies of coal seam gas water showed that natural zeolite had limited ability to reduce the concentration of sodium ions (loading 2.1 g Na/kg zeolite) with rapid breakthrough observed. It was concluded that natural zeolites may not be suitable for the removal of cations from coal seam gas water without improvement of their physical properties.
Resumo:
In an estuary, mixing and dispersion resulting from turbulence and small scale fluctuation has strong spatio-temporal variability which cannot be resolved in conventional hydrodynamic models while some models employs parameterizations large water bodies. This paper presents small scale diffusivity estimates from high resolution drifters sampled at 10 Hz for periods of about 4 hours to resolve turbulence and shear diffusivity within a tidal shallow estuary (depth < 3 m). Taylor's diffusion theorem forms the basis of a first order estimate for the diffusivity scale. Diffusivity varied between 0.001 – 0.02 m2/s during the flood tide experiment. The diffusivity showed strong dependence (R2 > 0.9) on the horizontal mean velocity within the channel. Enhanced diffusivity caused by shear dispersion resulting from the interaction of large scale flow with the boundary geometries was observed. Turbulence within the shallow channel showed some similarities with the boundary layer flow which include consistency with slope of 5/3 predicted by Kolmogorov's similarity hypothesis within the inertial subrange. The diffusivities scale locally by 4/3 power law following Okubo's scaling and the length scale scales as 3/2 power law of the time scale. The diffusivity scaling herein suggests that the modelling of small scale mixing within tidal shallow estuaries can be approached from classical turbulence scaling upon identifying pertinent parameters.