269 resultados para Evolution equations
Resumo:
A basic tenet of ecological economics is that economic growth and development are ultimately constrained by environmental carrying capacities. It is from this basis that notions of a sustainable economy and of sustainable economic development emerge to undergird the “standard model” of ecological economics. However, the belief in “hard” environmental constraints may be obscuring the important role of the entrepreneur in the co-evolution of economic and environmental relations, and hence limiting or distorting the analytic focus of ecological economics and the range of policy options that are considered for sustainable economic development. This paper outlines a co-evolutionary model of the dynamics of economic and ecological systems as connected by entrepreneurial behaviour. We then discuss some of the key analytic and policy implications.
Resumo:
Maximum-likelihood estimates of the parameters of stochastic differential equations are consistent and asymptotically efficient, but unfortunately difficult to obtain if a closed-form expression for the transitional probability density function of the process is not available. As a result, a large number of competing estimation procedures have been proposed. This article provides a critical evaluation of the various estimation techniques. Special attention is given to the ease of implementation and comparative performance of the procedures when estimating the parameters of the Cox–Ingersoll–Ross and Ornstein–Uhlenbeck equations respectively.
Resumo:
We seek numerical methods for second‐order stochastic differential equations that reproduce the stationary density accurately for all values of damping. A complete analysis is possible for scalar linear second‐order equations (damped harmonic oscillators with additive noise), where the statistics are Gaussian and can be calculated exactly in the continuous‐time and discrete‐time cases. A matrix equation is given for the stationary variances and correlation for methods using one Gaussian random variable per timestep. The only Runge–Kutta method with a nonsingular tableau matrix that gives the exact steady state density for all values of damping is the implicit midpoint rule. Numerical experiments, comparing the implicit midpoint rule with Heun and leapfrog methods on nonlinear equations with additive or multiplicative noise, produce behavior similar to the linear case.