214 resultados para Essential oil concentration
Resumo:
The role of ions in the production of atmospheric particles has gained wide interest due to their profound impact on climate. Away from anthropogenic sources, molecules are ionized by alpha radiation from radon exhaled from the ground and cosmic gamma radiation from space. These molecular ions quickly form into ‘cluster ions’, typically smaller than about 1.5 nm. Using our measurements and the published literature, we present evidence to show that cluster ion concentrations in forest areas are consistently higher than outside. Since alpha radiation cannot penetrate more than a few centimetres of soil, radon present deep in the ground cannot directly contribute to the measured cluster ion concentrations. We propose an additional mechanism whereby radon, which is water soluble, is brought up by trees and plants through the uptake of groundwater and released into the atmosphere by transpiration. We estimate that, in a forest comprising eucalyptus trees spaced 4m apart, approximately 28% of the radon in the air may be released by transpiration. Considering that 24% of the earth’s land area is still covered in forests; these findings have potentially important implications for atmospheric aerosol formation and climate.
Resumo:
The flood flow in urbanised areas constitutes a major hazard to the population and infrastructure as seen during the summer 2010-2011 floods in Queensland (Australia). Flood flows in urban environments have been studied relatively recently, although no study considered the impact of turbulence in the flow. During the 12-13 January 2011 flood of the Brisbane River, some turbulence measurements were conducted in an inundated urban environment in Gardens Point Road next to Brisbane's central business district (CBD) at relatively high frequency (50 Hz). The properties of the sediment flood deposits were characterised and the acoustic Doppler velocimeter unit was calibrated to obtain both instantaneous velocity components and suspended sediment concentration in the same sampling volume with the same temporal resolution. While the flow motion in Gardens Point Road was subcritical, the water elevations and velocities fluctuated with a distinctive period between 50 and 80 s. The low frequency fluctuations were linked with some local topographic effects: i.e, some local choke induced by an upstream constriction between stairwells caused some slow oscillations with a period close to the natural sloshing period of the car park. The instantaneous velocity data were analysed using a triple decomposition, and the same triple decomposition was applied to the water depth, velocity flux, suspended sediment concentration and suspended sediment flux data. The velocity fluctuation data showed a large energy component in the slow fluctuation range. For the first two tests at z = 0.35 m, the turbulence data suggested some isotropy. At z = 0.083 m, on the other hand, the findings indicated some flow anisotropy. The suspended sediment concentration (SSC) data presented a general trend with increasing SSC for decreasing water depth. During a test (T4), some long -period oscillations were observed with a period about 18 minutes. The cause of these oscillations remains unknown to the authors. The last test (T5) took place in very shallow waters and high suspended sediment concentrations. It is suggested that the flow in the car park was disconnected from the main channel. Overall the flow conditions at the sampling sites corresponded to a specific momentum between 0.2 to 0.4 m2 which would be near the upper end of the scale for safe evacuation of individuals in flooded areas. But the authors do not believe the evacuation of individuals in Gardens Point Road would have been safe because of the intense water surges and flow turbulence. More generally any criterion for safe evacuation solely based upon the flow velocity, water depth or specific momentum cannot account for the hazards caused by the flow turbulence, water depth fluctuations and water surges.
Resumo:
In previous research (Chung et al., 2009), the potential of the continuous risk profile (CRP) to proactively detect the systematic deterioration of freeway safety levels was presented. In this paper, this potential is investigated further, and an algorithm is proposed for proactively detecting sites where the collision rate is not sufficiently high to be classified as a high collision concentration location but where a systematic deterioration of safety level is observed. The approach proposed compares the weighted CRP across different years and uses the cumulative sum (CUSUM) algorithm to detect the sites where changes in collision rate are observed. The CRPs of the detected sites are then compared for reproducibility. When high reproducibility is observed, a growth factor is used for sequential hypothesis testing to determine if the collision profiles are increasing over time. Findings from applying the proposed method using empirical data are documented in the paper together with a detailed description of the method.
Resumo:
The concept of ‘strategic dalliances’– defined as non-committal relationships that companies can ‘dip in and out of,’ or dally with, while simultaneously maintaining longer-term strategic partnerships with other firms and suppliers – has emerged as a promising strategy by which organizations can create discontinuous innovations. But does this approach work equally well for every sector? Moreover, how can these links be effectively used to foster the process of discontinuous innovation? Toward assessing the role that industry clockspeed plays in the success or failure of strategic dalliances, we provide case study evidence from Twister BV, an upstream oil and gas technology provider, and show that strategic dalliances can be an enabler for the discontinuous innovation process in slow clockspeed industries. Implications for research and practice are discussed, and conclusions from our findings are drawn.
Resumo:
Zeolite-based technology can provide a cost effective solution for stormwater treatment for the removal of toxic heavy metals under increasing demand of safe water from alternative sources. This paper reviews the currently available knowledge relating to the effect of properties of zeolites such as pore size, surface area and Si:Al ratio and the physico-chemical conditions of the system such as pH, temperature, initial metal concentration and zeolite concentration on heavy metal removal performance. The primary aims are, to consolidate available knowledge and identify knowledge gaps. It was established that an in-depth understanding of operational issues such as, diffusion of metal ions into the zeolite pore structure, pore clogging, zeolite surface coverage by particulates in stormwater as well as the effect of pH on stormwater quality in the presence of zeolites is essential for developing a zeolite-based technology for the treatment of polluted stormwater. The optimum zeolite concentration to treat typical volumes of stormwater and initial heavy metal concentrations in stormwater should also be considered as operational issues in this regard. Additionally, leaching of aluminium and sodium ions from the zeolite structure to solution were identified as key issues requiring further research in the effort to develop cost effective solutions for the removal of heavy metals from stormwater.