135 resultados para Ecological indices
Resumo:
This paper aims to present ‘vastu purusha mandala’(VPM), a symbolic diagram used in the indigenous system of Indian architecture as a human ecologic frame work for designing living environments. The article begins with an attempt to provide a working definition for the ‘living environment’ based on the theories developed by Rapoport (2005) and Lawrence (2001). It then discusses the symbolism and the human ecologic significance of VPM. This is substantiated through the works of Kramrisch (1976), Moore (1989), Shukla (1996) and Chakrabarthi (1998). Some recent papers on Vastu Shastra are also examined. Furthermore, VPM is compared with the livability guidelines developed for high-rise living by the Centre for Subtropical Design, Queensland University of Technology, Brisbane, Australia. A meaningful interpretation of vastushastra which is free from mysticism and symbolism is proffered through this paper.
Resumo:
The QUT Centre for Subtropical Design reviewed tools and indices that measure ‘liveability’ on behalf of the Brisbane Development Association. This review provides insight into the concept of ‘liveability’ and how various international and local tools measure or value ‘liveability’ of cities. Liveability is subjective, and can mean different things to different individuals depending upon their situation and lifecycle stage, and is therefore difficult to define. Essentially, the term ‘liveability’ constitutes thoughts of quality of life and wellbeing of residents in urban environments.
Resumo:
In recent years, cities have shown increasing signs of environmental problems due to the negative impacts of urban activities. The degradation and depletion of natural resources, climate change, and development pressure on green areas have become major concerns for cities. In response to these problems, urban planning policies have shifted to a sustainable focus and authorities have begun to develop new strategies for improving the quality of urban ecosystems. An extremely important function of an urban ecosystem is to provide healthy and sustainable environments for both natural systems and communities. Therefore, ecological planning is a functional requirement in the establishment of sustainable built environment. With ecological planning, human needs are supplied while natural resources are used in the most effective and sustainable manner and ecological balance is sustained. Protecting human and environmental health, having healthy ecosystems, reducing environmental pollution and providing green spaces are just a few of the many benefits of ecological planning. In this context, this chapter briefly presents a short overview of the importance of the implementation of ecological planning into sustainable urban development. Furthermore, it presents a conceptual framework for a new methodology for developing sustainable urban ecosystems through ecological planning approach.
Resumo:
Environmental and sustainability issues pose challenges for society. Although education is seen as being a contributor to addressing sustainability, teacher education has been slow to act in preparing future teachers to teach sustainability. Recent Australian curriculum documents nominate sustainability as one of three cross-curriculum priorities. In one Australian university course, an Ecological Footprint Calculator tool has been employed to challenge preservice early childhood teachers to consider the sustainability of their lifestyles as a means for engaging them in learning and teaching for sustainability. Students enrolled in an integrated arts and humanities subject voluntarily engaged with the online calculator and shared their findings on an electronic discussion forum. These postings then became the basis of qualitative analysis and discussion. Data categories included reactions and reflections on reasons for the ‘heaviness’ of their footprints , student reactions leading to actions to reduce their footprints, reflections on the implications of the footprint results for future teaching, reactions that considered the need for societal change, and reflections on the integration of sustainability with the visual arts. The power of the tool’s application to stimulate interest in sustainability and education for sustainability more broadly in teacher education is explored.
Resumo:
This paper proposes how the theoretical framework of ecological dynamics can provide an influential model of the learner and the learning process to pre-empt effective behaviour changes. Here we argue that ecological dynamics supports a well established model of the learner ideally suited to the environmental education context because of its emphasis on the learner-environment relationship. The model stems from perspectives on behaviour change in ecological psychology and dynamical systems theory. The salient points of the model are highlighted for educators interested in manipulating environmental constraints in the learning process, with the aim of designing effective learning programs in environmental education. We conclude by providing generic principles of application which might define the learning process in environmental education programs.
Resumo:
This paper presents an input-orientated data envelopment analysis (DEA) framework which allows the measurement and decomposition of economic, environmental and ecological efficiency levels in agricultural production across different countries. Economic, environmental and ecological optimisations search for optimal input combinations that minimise total costs, total amount of nutrients, and total amount of cumulative exergy contained in inputs respectively. The application of the framework to an agricultural dataset of 30 OECD countries revealed that (i) there was significant scope to make their agricultural production systemsmore environmentally and ecologically sustainable; (ii) the improvement in the environmental and ecological sustainability could be achieved by being more technically efficient and, even more significantly, by changing the input combinations; (iii) the rankings of sustainability varied significantly across OECD countries within frontier-based environmental and ecological efficiency measures and between frontier-based measures and indicators.
Resumo:
This paper provides a commentary on the contribution by Dr Chow who questioned whether the functions of learning are general across all categories of tasks or whether there are some task-particular aspects to the functions of learning in relation to task type. Specifically, they queried whether principles and practice for the acquisition of sport skills are different than what they are for musical, industrial, military and human factors skills. In this commentary we argue that ecological dynamics contains general principles of motor learning that can be instantiated in specific performance contexts to underpin learning design. In this proposal, we highlight the importance of conducting skill acquisition research in sport, rather than relying on empirical outcomes of research from a variety of different performance contexts. Here we discuss how task constraints of different performance contexts (sport, industry, military, music) provide different specific information sources that individuals use to couple their actions when performing and acquiring skills. We conclude by suggesting that his relationship between performance task constraints and learning processes might help explain the traditional emphasis on performance curves and performance outcomes to infer motor learning.
Resumo:
Vibration Based Damage Identification Techniques which use modal data or their functions, have received significant research interest in recent years due to their ability to detect damage in structures and hence contribute towards the safety of the structures. In this context, Strain Energy Based Damage Indices (SEDIs), based on modal strain energy, have been successful in localising damage in structuers made of homogeneous materials such as steel. However, their application to reinforced concrete (RC) structures needs further investigation due to the significant difference in the prominent damage type, the flexural crack. The work reported in this paper is an integral part of a comprehensive research program to develop and apply effective strain energy based damage indices to assess damage in reinforced concrete flexural members. This research program established (i) a suitable flexural crack simulation technique, (ii) four improved SEDI's and (iii) programmable sequentional steps to minimise effects of noise. This paper evaluates and ranks the four newly developed SEDIs and existing seven SEDIs for their ability to detect and localise flexural cracks in RC beams. Based on the results of the evaluations, it recommends the SEDIs for use with single and multiple vibration modes.
Resumo:
This paper describes the development and validation of a PC based MUARC Driver Distraction Test designed to measure simulated driving performance while the driver is performing a secondary task. The paper discusses the logic behind the development of the test, including the principles that were used to guide its design, as well as the results of a pilot validation study. The findings from this study were consistent with previous research and theory and were consistent with those obtained with the LCT. The results did, however, highlight a number of refinements that were necessary to improve the utility of the test.
Resumo:
Lignocellulosic materials, such as sugar cane bagasse, a waste product of the sugarcane processing industry, agricultural residues and herbaceous crops, may serve as an abundant and comparatively cheap feedstock for largescale industrial fermentation, resulting in the production of marketable end-products. However, the complex structure of lignocellulosic materials, the presence of various hexose and pentose sugars in the hemicellulose component, and the presence of various compounds that inhibit the organisms selected for the fermentation process, all constitute barriers that add to the production costs and make full scale industrial production economically less feasible. The work presented in this thesis was conducted in order to screen microorganisms for ability to utilize pentose sugars derived from the sugar mill industrial waste. A large number of individual bacterial strains were investigated from hemi-cellulose rich material collected at the Proserpine and Maryborough sugar mills, notably soil samples from the mill sites. The research conducted to isolation of six pentose-capable Gram-positive organisms from the actinomycetes group by using pentose as a sole carbon source in the cultivation process. The isolates were identified as Corynebacterium glutamicum, Actinomyces odontolyticus, Nocardia elegans, and Propionibacterium freudenreichii all of which were isolated from the hemicellulose-enriched soil. Pentose degrading microbes are very rare in the environment, so this was a significant discovery. Previous research indicated that microbes could degrade pentose after genetic modification but the microbes discovered in this research were able to naturally utilize pentose. Six isolates, identified as four different genera, were investigated for their ability to utilize single sugars as substrates (glucose, xylose, arabinose or ribose), and also dual sugars as substrates (a hexose plus a pentose). The results demonstrated that C. glutamicum, A. odontolyticus, N. elegans, and P. freudenreichii were pentose-capable (able to grow using xylose or other pentose sugar), and also showed diauxie growth characteristics during the dual-sugar (glucose, in combination with xylose, arabinose or ribose) carbon source tests. In addition, it was shown that the isolates displayed very small differences in growth rates when grown on dual sugars as compared to single sugars, whether pentose or hexose in nature. The anabolic characteristics of C. glutamicum, A. odontolyticus, N. elegans and P. freudenreichii were subsequently investigated by qualitative analysis of their end-products, using high performance liquid chromatography (HPLC). All of the organisms produced arginine and cysteine after utilization of the pentose substrates alone. In addition, P. freudenreichii produced alanine and glycine. The end-product profile arising from culture with dual carbon sources was also tested. Interestingly, this time the product was different. All of them produced the amino acid glycine, when grown on a combination substrate-mix of glucose with xylose, and also glucose with arabinose. Only N. elegans was able to break down ribose, either singly or in combination with glucose, and the end-product of metabolism of the glucose plus ribose substrate combination was glutamic acid. The ecological analysis of microbial abundance in sugar mill waste was performed using denaturing gradient gel electrophoresis (DGGE) and also the metagenomic microarray PhyloChip method. Eleven solid samples and seven liquid samples were investigated. A very complex bacterial ecosystem was demonstrated in the seven liquid samples after testing with the PhyloChip method. It was also shown that bagasse leachate was the most different, compared to all of the other samples, by virtue of its richness in variety of taxa and the complexity of its bacterial community. The bacterial community in solid samples from Proserpine, Mackay and Maryborough sugar mills showed huge diversity. The information found from 16S rDNA sequencing results was that the bacterial genera Brevibacillus, Rhodospirillaceae, Bacillus, Vibrio and Pseudomonas were present in greatest abundance. In addition, Corynebacterium was also found in the soil samples. The metagenomic studies of the sugar mill samples demonstrate two important outcomes: firstly that the bagasse leachate, as potentially the most pentose-rich sample tested, had the most complex and diverse bacterial community; and secondly that the pentose-capable isolates that were initially discovered at the beginning of this study, were not amongst the most abundant taxonomic groups discovered in the sugar mill samples, and in fact were, as suspected, very rare. As a bioprospecting exercise, therefore, the study has discovered organisms that are naturally present, but in very small numbers, in the appropriate natural environment. This has implications for the industrial application of E-PUB, in that a seeding process using a starter culture will be necessary for industrial purposes, rather than simply assuming that natural fermentation might occur.
Resumo:
During the last several decades, the quality of natural resources and their services have been exposed to significant degradation from increased urban populations combined with the sprawl of settlements, development of transportation networks and industrial activities (Dorsey, 2003; Pauleit et al., 2005). As a result of this environmental degradation, a sustainable framework for urban development is required to provide the resilience of natural resources and ecosystems. Sustainable urban development refers to the management of cities with adequate infrastructure to support the needs of its population for the present and future generations as well as maintain the sustainability of its ecosystems (UNEP/IETC, 2002; Yigitcanlar, 2010). One of the important strategic approaches for planning sustainable cities is „ecological planning‟. Ecological planning is a multi-dimensional concept that aims to preserve biodiversity richness and ecosystem productivity through the sustainable management of natural resources (Barnes et al., 2005). As stated by Baldwin (1985, p.4), ecological planning is the initiation and operation of activities to direct and control the acquisition, transformation, disruption and disposal of resources in a manner capable of sustaining human activities with a minimum disruption of ecosystem processes. Therefore, ecological planning is a powerful method for creating sustainable urban ecosystems. In order to explore the city as an ecosystem and investigate the interaction between the urban ecosystem and human activities, a holistic urban ecosystem sustainability assessment approach is required. Urban ecosystem sustainability assessment serves as a tool that helps policy and decision-makers in improving their actions towards sustainable urban development. There are several methods used in urban ecosystem sustainability assessment among which sustainability indicators and composite indices are the most commonly used tools for assessing the progress towards sustainable land use and urban management. Currently, a variety of composite indices are available to measure the sustainability at the local, national and international levels. However, the main conclusion drawn from the literature review is that they are too broad to be applied to assess local and micro level sustainability and no benchmark value for most of the indicators exists due to limited data availability and non-comparable data across countries. Mayer (2008, p. 280) advocates that by stating "as different as the indices may seem, many of them incorporate the same underlying data because of the small number of available sustainability datasets". Mori and Christodoulou (2011) also argue that this relative evaluation and comparison brings along biased assessments, as data only exists for some entities, which also means excluding many nations from evaluation and comparison. Thus, there is a need for developing an accurate and comprehensive micro-level urban ecosystem sustainability assessment method. In order to develop such a model, it is practical to adopt an approach that uses a method to utilise indicators for collecting data, designate certain threshold values or ranges, perform a comparative sustainability assessment via indices at the micro-level, and aggregate these assessment findings to the local level. Hereby, through this approach and model, it is possible to produce sufficient and reliable data to enable comparison at the local level, and provide useful results to inform the local planning, conservation and development decision-making process to secure sustainable ecosystems and urban futures. To advance research in this area, this study investigated the environmental impacts of an existing urban context by using a composite index with an aim to identify the interaction between urban ecosystems and human activities in the context of environmental sustainability. In this respect, this study developed a new comprehensive urban ecosystem sustainability assessment tool entitled the „Micro-level Urban-ecosystem Sustainability IndeX‟ (MUSIX). The MUSIX model is an indicator-based indexing model that investigates the factors affecting urban sustainability in a local context. The model outputs provide local and micro-level sustainability reporting guidance to help policy-making concerning environmental issues. A multi-method research approach, which is based on both quantitative analysis and qualitative analysis, was employed in the construction of the MUSIX model. First, a qualitative research was conducted through an interpretive and critical literature review in developing a theoretical framework and indicator selection. Afterwards, a quantitative research was conducted through statistical and spatial analyses in data collection, processing and model application. The MUSIX model was tested in four pilot study sites selected from the Gold Coast City, Queensland, Australia. The model results detected the sustainability performance of current urban settings referring to six main issues of urban development: (1) hydrology, (2) ecology, (3) pollution, (4) location, (5) design, and; (6) efficiency. For each category, a set of core indicators was assigned which are intended to: (1) benchmark the current situation, strengths and weaknesses, (2) evaluate the efficiency of implemented plans, and; (3) measure the progress towards sustainable development. While the indicator set of the model provided specific information about the environmental impacts in the area at the parcel scale, the composite index score provided general information about the sustainability of the area at the neighbourhood scale. Finally, in light of the model findings, integrated ecological planning strategies were developed to guide the preparation and assessment of development and local area plans in conjunction with the Gold Coast Planning Scheme, which establishes regulatory provisions to achieve ecological sustainability through the formulation of place codes, development codes, constraint codes and other assessment criteria that provide guidance for best practice development solutions. These relevant strategies can be summarised as follows: • Establishing hydrological conservation through sustainable stormwater management in order to preserve the Earth’s water cycle and aquatic ecosystems; • Providing ecological conservation through sustainable ecosystem management in order to protect biological diversity and maintain the integrity of natural ecosystems; • Improving environmental quality through developing pollution prevention regulations and policies in order to promote high quality water resources, clean air and enhanced ecosystem health; • Creating sustainable mobility and accessibility through designing better local services and walkable neighbourhoods in order to promote safe environments and healthy communities; • Sustainable design of urban environment through climate responsive design in order to increase the efficient use of solar energy to provide thermal comfort, and; • Use of renewable resources through creating efficient communities in order to provide long-term management of natural resources for the sustainability of future generations.
In the blink of an eye : the circadian effects on ocular and subjective indices of driver sleepiness
Resumo:
Driver sleepiness contributes substantially to fatal and severe crashes and the contribution it makes to less serious crashes is likely to as great or greater. Currently, drivers’ awareness of sleepiness (subjective sleepiness) remains a critical component for the mitigation of sleep-related crashes. Nonetheless, numerous calls have been made for technological monitors of drivers’ physiological sleepiness levels so drivers can be ‘alerted’ when approaching high levels of sleepiness. Several physiological indices of sleepiness show potential as a reliable metric to monitor drivers’ sleepiness levels, with eye blink indices being a promising candidate. However, extensive evaluations of eye blink measures are lacking including the effects that the endogenous circadian rhythm can have on eye blinks. To examine the utility of ocular measures, 26 participants completed a simulated driving task while physiological measures of blink rate and duration were recorded after partial sleep restriction. To examine the circadian effects participants were randomly assigned to complete either a morning or an afternoon session of the driving task. The results show subjective sleepiness levels increased over the duration of the task. The blink duration index was sensitive to increases in sleepiness during morning testing, but was not sensitive during afternoon testing. This finding suggests that the utility of blink indices as a reliable metric for sleepiness are still far from specific. The subjective measures had the largest effect size when compared to the blink measures. Therefore, awareness of sleepiness still remains a critical factor for driver sleepiness and the mitigation of sleep-related crashes.
Resumo:
Purpose A knowledge-based urban development needs to be sustainable and, therefore, requires ecological planning strategies to ensure a better quality of its services. The purpose of this paper is to present an innovative approach for monitoring the sustainability of urban services and help the policy-making authorities to revise the current planning and development practices for more effective solutions. The paper introduces a new assessment tool–Micro-level Urban-ecosystem Sustainability IndeX (MUSIX) – that provides a quantitative measure of urban sustainability in a local context. Design/methodology/approach A multi-method research approach was employed in the construction of the MUSIX. A qualitative research was conducted through an interpretive and critical literature review in developing a theoretical framework and indicator selection. A quantitative research was conducted through statistical and spatial analyses in data collection, processing and model application. Findings/results MUSIX was tested in a pilot study site and provided information referring to the main environmental impacts arising from rapid urban development and population growth. Related to that, some key ecological planning strategies were recommended to guide the preparation and assessment of development and local area plans. Research limitations/implications This study provided fundamental information that assists developers, planners and policy-makers to investigate the multidimensional nature of sustainability at the local level by capturing the environmental pressures and their driving forces in highly developed urban areas. Originality/value This study measures the sustainability of urban development plans through providing data analysis and interpretation of results in a new spatial data unit.