379 resultados para ENERGY SYSTEMS


Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports the initial steps of research on planning of rural networks for MV and LV. In this paper, two different cases are studied. In the first case, 100 loads are distributed uniformly on a 100 km transmission line in a distribution network and in the second case, the load structure become closer to the rural situation. In case 2, 21 loads are located in a distribution system so that their distance is increasing, distance between load 1 and 2 is 3 km, between 2 and 3 is 6 km, etc). These two models to some extent represent the distribution system in urban and rural areas, respectively. The objective function for the design of the optimal system consists of three main parts: cost of transformers, and MV and LV conductors. The bus voltage is expressed as a constraint and should be maintained within a standard level, rising or falling by no more than 5%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper analyzes the performance of some of the widely used voltage stability indices, namely, singular value, eigenvalue, and loading margin with different static load models. Well-known ZIP model is used to represent loads having components with different power to voltage sensitivities. Studies are carried out on a 10-bus power system and the New England 39-bus power system models. The effects of variation of load model on the performance of the voltage stability indices are discussed. The choice of voltage stability index in the context of load modelling is also suggested in this paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the stability of an autonomous microgrid with multiple distributed generators (DG) is studied through eigenvalue analysis. It is assumed that all the DGs are connected through Voltage Source Converter (VSC) and all connected loads are passive. The VSCs are controlled by state feedback controller to achieve desired voltage and current outputs that are decided by a droop controller. The state space models of each of the converters with its associated feedback are derived. These are then connected with the state space models of the droop, network and loads to form a homogeneous model, through which the eigenvalues are evaluated. The system stability is then investigated as a function of the droop controller real and reac-tive power coefficients. These observations are then verified through simulation studies using PSCAD/EMTDC. It will be shown that the simulation results closely agree with stability be-havior predicted by the eigenvalue analysis.