270 resultados para Drop Test Equipment.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a much anticipated judgment, the Federal Circuit has sought to clarify the standards applicable in determining whether a claimed method constitutes patent-eligible subject matter. In Bilski, the Federal Circuit identified a test to determine whether a patentee has made claims that pre-empt the use of a fundamental principle or an abstract idea or whether those claims cover only a particular application of a fundamental principle or abstract idea. It held that the sole test for determining subject matter eligibility for a claimed process under § 101 is that: (1) it is tied to a particular machine or apparatus, or (2) it transforms a particular article into a different state or thing. The court termed this the “machine-or-transformation test.” In so doing it overruled its earlier State Street decision to the extent that it deemed its “useful, tangible and concrete result” test as inadequate to determine whether an alleged invention recites patent-eligible subject matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the study of student learning literature, the traditional view holds that when students are faced with heavy workload, poor teaching, and content that they cannot relate to – important aspects of the learning context, they will more likely utilise the surface approach to learning due to stresses, lack of understanding and lack of perceived relevance of the content (Kreber, 2003; Lizzio, Wilson, & Simons, 2002; Ramdsen, 1989; Ramsden, 1992; Trigwell & Prosser, 1991; Vermunt, 2005). For example, in studies involving health and medical sciences students, courses that utilised student-centred, problem-based approaches to teaching and learning were found to elicit a deeper approach to learning than the teacher-centred, transmissive approach (Patel, Groen, & Norman, 1991; Sadlo & Richardson, 2003). It is generally accepted that the line of causation runs from the learning context (or rather students’ self reported data on the learning context) to students’ learning approaches. That is, it is the learning context as revealed by students’ self-reported data that elicit the associated learning behaviour. However, other research studies also found that the same teaching and learning environment can be perceived differently by different students. In a study of students’ perceptions of assessment requirements, Sambell and McDowell (1998) found that students “are active in the reconstruction of the messages and meanings of assessment” (p. 391), and their interpretations are greatly influenced by their past experiences and motivations. In a qualitative study of Hong Kong tertiary students, Kember (2004) found that students using the surface learning approach reported heavier workload than students using the deep learning approach. According to Kember if students learn by extracting meanings from the content and making connections, they will more likely see the higher order intentions embodied in the content and the high cognitive abilities being assessed. On the other hand, if they rote-learn for the graded task, they fail to see the hierarchical relationship in the content and to connect the information. These rote-learners will tend to see the assessment as requiring memorising and regurgitation of a large amount of unconnected knowledge, which explains why they experience a high workload. Kember (2004) thus postulate that it is the learning approach that influences how students perceive workload. Campbell and her colleagues made a similar observation in their interview study of secondary students’ perceptions of teaching in the same classroom (Campbell et al., 2001). The above discussions suggest that students’ learning approaches can influence their perceptions of assessment demands and other aspects of the learning context such as relevance of content and teaching effectiveness. In other words, perceptions of elements in the teaching and learning context are endogenously determined. This study attempted to investigate the causal relationships at the individual level between learning approaches and perceptions of the learning context in economics education. In this study, students’ learning approaches and their perceptions of the learning context were measured. The elements of the learning context investigated include: teaching effectiveness, workload and content. The authors are aware of existence of other elements of the learning context, such as generic skills, goal clarity and career preparation. These aspects, however, were not within the scope of this present study and were therefore not investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To explore whether people's organ donation consent decisions occur via a reasoned and/or social reaction pathway. --------- Design: We examined prospectively students' and community members' decisions to register consent on a donor register and discuss organ donation wishes with family. --------- Method: Participants completed items assessing theory of planned behaviour (TPB; attitude, subjective norm, perceived behavioural control (PBC)), prototype/willingness model (PWM; donor prototype favourability/similarity, past behaviour), and proposed additional influences (moral norm, self-identity, recipient prototypes) for registering (N=339) and discussing (N=315) intentions/willingness. Participants self-reported their registering (N=177) and discussing (N=166) behaviour 1 month later. The utility of the (1) TPB, (2) PWM, (3) augmented TPB with PWM, and (4) augmented TPB with PWM and extensions was tested using structural equation modelling for registering and discussing intentions/willingness, and logistic regression for behaviour. --------- Results: While the TPB proved a more parsimonious model, fit indices suggested that the other proposed models offered viable options, explaining greater variance in communication intentions/willingness. The TPB, augmented TPB with PWM, and extended augmented TPB with PWM best explained registering and discussing decisions. The proposed and revised PWM also proved an adequate fit for discussing decisions. Respondents with stronger intentions (and PBC for registering) had a higher likelihood of registering and discussing. --------- Conclusions: People's decisions to communicate donation wishes may be better explained via a reasoned pathway (especially for registering); however, discussing involves more reactive elements. The role of moral norm, self-identity, and prototypes as influences predicting communication decisions were highlighted also.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A research project was conducted at Queensland University of Technology on the relationship between the forces at the wheel-rail interface in track and the rate of degradation of track. Data for the study was obtained from an instrumented vehicle which ran repeatedly over a section of Queensland Rail's track in Central Queensland over a 6-month period. The wheel-rail forces had to be correlated with the elements of roughness in the test track profile, which were measured with a variety of equipment. At low frequencies, there was strong correlation between forces and profile, as expected, but diminishing correlation as frequencies increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Draglines are massive machines commonly used in surface mining to strip overburden, revealing the targeted minerals for extraction. Automating some or all of the phases of operation of these machines offers the potential for significant productivity and maintenance benefits. The mining industry has a history of slow uptake of automation systems due to the challenges contained in the harsh, complex, three-dimensional (3D), dynamically changing mine operating environment. Robotics as a discipline is finally starting to gain acceptance as a technology with the potential to assist mining operations. This article examines the evolution of robotic technologies applied to draglines in the form of machine embedded intelligent systems. Results from this work include a production trial in which 250,000 tons of material was moved autonomously, experiments demonstrating steps towards full autonomy, and teleexcavation experiments in which a dragline in Australia was tasked by an operator in the United States.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The Brief Michigan Alcoholism Screening Test (bMAST) is a 10-item test derived from the 25-item Michigan Alcoholism Screening Test (MAST). It is widely used in the assessment of alcohol dependence. In the absence of previous validation studies, the principal aim of this study was to assess the validity and reliability of the bMAST as a measure of the severity of problem drinking. Method: There were 6,594 patients (4,854 men, 1,740 women) who had been referred for alcohol-use disorders to a hospital alcohol and drug service who voluntarily participated in this study. Results: An exploratory factor analysis defined a two-factor solution, consisting of Perception of Current Drinking and Drinking Consequences factors. Structural equation modeling confirmed that the fit of a nine-item, two-factor model was superior to the original one-factor model. Concurrent validity was assessed through simultaneous administration of the Alcohol Use Disorders Identification Test (AUDIT) and associations with alcohol consumption and clinically assessed features of alcohol dependence. The two-factor bMAST model showed moderate correlations with the AUDIT. The two-factor bMAST and AUDIT were similarly associated with quantity of alcohol consumption and clinically assessed dependence severity features. No differences were observed between the existing weighted scoring system and the proposed simple scoring system. Conclusions: In this study, both the existing bMAST total score and the two-factor model identified were as effective as the AUDIT in assessing problem drinking severity. There are additional advantages of employing the two-factor bMAST in the assessment and treatment planning of patients seeking treatment for alcohol-use disorders. (J. Stud. Alcohol Drugs 68: 771-779,2007)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of investment in the electric power has been the subject of intensive research for many years. The efficient generation and distribution of electrical energy is a difficult task involving the operation of a complex network of facilities, often located over very large geographical regions. Electric power utilities have made use of an enormous range of mathematical models. Some models address time spans which last for a fraction of a second, such as those that deal with lightning strikes on transmission lines while at the other end of the scale there are models which address time horizons consisting of ten or twenty years; these usually involve long range planning issues. This thesis addresses the optimal long term capacity expansion of an interconnected power system. The aim of this study has been to derive a new, long term planning model which recognises the regional differences which exist for energy demand and which are present in the construction and operation of power plant and transmission line equipment. Perhaps the most innovative feature of the new model is the direct inclusion of regional energy demand curves in the nonlinear form. This results in a nonlinear capacity expansion model. After review of the relevant literature, the thesis first develops a model for the optimal operation of a power grid. This model directly incorporates regional demand curves. The model is a nonlinear programming problem containing both integer and continuous variables. A solution algorithm is developed which is based upon a resource decomposition scheme that separates the integer variables from the continuous ones. The decompostion of the operating problem leads to an interactive scheme which employs a mixed integer programming problem, known as the master, to generate trial operating configurations. The optimum operating conditions of each trial configuration is found using a smooth nonlinear programming model. The dual vector recovered from this model is subsequently used by the master to generate the next trial configuration. The solution algorithm progresses until lower and upper bounds converge. A range of numerical experiments are conducted and these experiments are included in the discussion. Using the operating model as a basis, a regional capacity expansion model is then developed. It determines the type, location and capacity of additional power plants and transmission lines, which are required to meet predicted electicity demands. A generalised resource decompostion scheme, similar to that used to solve the operating problem, is employed. The solution algorithm is used to solve a range of test problems and the results of these numerical experiments are reported. Finally, the expansion problem is applied to the Queensland electricity grid in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of investment in the electric power has been the subject of intensive research for many years. The efficient generation and distribution of electrical energy is a difficult task involving the operation of a complex network of facilities, often located over very large geographical regions. Electric power utilities have made use of an enormous range of mathematical models. Some models address time spans which last for a fraction of a second, such as those that deal with lightning strikes on transmission lines while at the other end of the scale there are models which address time horizons consisting of ten or twenty years; these usually involve long range planning issues. This thesis addresses the optimal long term capacity expansion of an interconnected power system. The aim of this study has been to derive a new, long term planning model which recognises the regional differences which exist for energy demand and which are present in the construction and operation of power plant and transmission line equipment. Perhaps the most innovative feature of the new model is the direct inclusion of regional energy demand curves in the nonlinear form. This results in a nonlinear capacity expansion model. After review of the relevant literature, the thesis first develops a model for the optimal operation of a power grid. This model directly incorporates regional demand curves. The model is a nonlinear programming problem containing both integer and continuous variables. A solution algorithm is developed which is based upon a resource decomposition scheme that separates the integer variables from the continuous ones. The decompostion of the operating problem leads to an interactive scheme which employs a mixed integer programming problem, known as the master, to generate trial operating configurations. The optimum operating conditions of each trial configuration is found using a smooth nonlinear programming model. The dual vector recovered from this model is subsequently used by the master to generate the next trial configuration. The solution algorithm progresses until lower and upper bounds converge. A range of numerical experiments are conducted and these experiments are included in the discussion. Using the operating model as a basis, a regional capacity expansion model is then developed. It determines the type, location and capacity of additional power plants and transmission lines, which are required to meet predicted electicity demands. A generalised resource decompostion scheme, similar to that used to solve the operating problem, is employed. The solution algorithm is used to solve a range of test problems and the results of these numerical experiments are reported. Finally, the expansion problem is applied to the Queensland electricity grid in Australia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

World economies increasingly demand reliable and economical power supply and distribution. To achieve this aim the majority of power systems are becoming interconnected, with several power utilities supplying the one large network. One problem that occurs in a large interconnected power system is the regular occurrence of system disturbances which can result in the creation of intra-area oscillating modes. These modes can be regarded as the transient responses of the power system to excitation, which are generally characterised as decaying sinusoids. For a power system operating ideally these transient responses would ideally would have a “ring-down” time of 10-15 seconds. Sometimes equipment failures disturb the ideal operation of power systems and oscillating modes with ring-down times greater than 15 seconds arise. The larger settling times associated with such “poorly damped” modes cause substantial power flows between generation nodes, resulting in significant physical stresses on the power distribution system. If these modes are not just poorly damped but “negatively damped”, catastrophic failures of the system can occur. To ensure system stability and security of large power systems, the potentially dangerous oscillating modes generated from disturbances (such as equipment failure) must be quickly identified. The power utility must then apply appropriate damping control strategies. In power system monitoring there exist two facets of critical interest. The first is the estimation of modal parameters for a power system in normal, stable, operation. The second is the rapid detection of any substantial changes to this normal, stable operation (because of equipment breakdown for example). Most work to date has concentrated on the first of these two facets, i.e. on modal parameter estimation. Numerous modal parameter estimation techniques have been proposed and implemented, but all have limitations [1-13]. One of the key limitations of all existing parameter estimation methods is the fact that they require very long data records to provide accurate parameter estimates. This is a particularly significant problem after a sudden detrimental change in damping. One simply cannot afford to wait long enough to collect the large amounts of data required for existing parameter estimators. Motivated by this gap in the current body of knowledge and practice, the research reported in this thesis focuses heavily on rapid detection of changes (i.e. on the second facet mentioned above). This thesis reports on a number of new algorithms which can rapidly flag whether or not there has been a detrimental change to a stable operating system. It will be seen that the new algorithms enable sudden modal changes to be detected within quite short time frames (typically about 1 minute), using data from power systems in normal operation. The new methods reported in this thesis are summarised below. The Energy Based Detector (EBD): The rationale for this method is that the modal disturbance energy is greater for lightly damped modes than it is for heavily damped modes (because the latter decay more rapidly). Sudden changes in modal energy, then, imply sudden changes in modal damping. Because the method relies on data from power systems in normal operation, the modal disturbances are random. Accordingly, the disturbance energy is modelled as a random process (with the parameters of the model being determined from the power system under consideration). A threshold is then set based on the statistical model. The energy method is very simple to implement and is computationally efficient. It is, however, only able to determine whether or not a sudden modal deterioration has occurred; it cannot identify which mode has deteriorated. For this reason the method is particularly well suited to smaller interconnected power systems that involve only a single mode. Optimal Individual Mode Detector (OIMD): As discussed in the previous paragraph, the energy detector can only determine whether or not a change has occurred; it cannot flag which mode is responsible for the deterioration. The OIMD seeks to address this shortcoming. It uses optimal detection theory to test for sudden changes in individual modes. In practice, one can have an OIMD operating for all modes within a system, so that changes in any of the modes can be detected. Like the energy detector, the OIMD is based on a statistical model and a subsequently derived threshold test. The Kalman Innovation Detector (KID): This detector is an alternative to the OIMD. Unlike the OIMD, however, it does not explicitly monitor individual modes. Rather it relies on a key property of a Kalman filter, namely that the Kalman innovation (the difference between the estimated and observed outputs) is white as long as the Kalman filter model is valid. A Kalman filter model is set to represent a particular power system. If some event in the power system (such as equipment failure) causes a sudden change to the power system, the Kalman model will no longer be valid and the innovation will no longer be white. Furthermore, if there is a detrimental system change, the innovation spectrum will display strong peaks in the spectrum at frequency locations associated with changes. Hence the innovation spectrum can be monitored to both set-off an “alarm” when a change occurs and to identify which modal frequency has given rise to the change. The threshold for alarming is based on the simple Chi-Squared PDF for a normalised white noise spectrum [14, 15]. While the method can identify the mode which has deteriorated, it does not necessarily indicate whether there has been a frequency or damping change. The PPM discussed next can monitor frequency changes and so can provide some discrimination in this regard. The Polynomial Phase Method (PPM): In [16] the cubic phase (CP) function was introduced as a tool for revealing frequency related spectral changes. This thesis extends the cubic phase function to a generalised class of polynomial phase functions which can reveal frequency related spectral changes in power systems. A statistical analysis of the technique is performed. When applied to power system analysis, the PPM can provide knowledge of sudden shifts in frequency through both the new frequency estimate and the polynomial phase coefficient information. This knowledge can be then cross-referenced with other detection methods to provide improved detection benchmarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experts in injection molding often refer to previous solutions to find a mold design similar to the current mold and use previous successful molding process parameters with intuitive adjustment and modification as a start for the new molding application. This approach saves a substantial amount of time and cost in experimental based corrective actions which are required in order to reach optimum molding conditions. A Case-Based Reasoning (CBR) System can perform the same task by retrieving a similar case which is applied to the new case from the case library and uses the modification rules to adapt a solution to the new case. Therefore, a CBR System can simulate human e~pertise in injection molding process design. This research is aimed at developing an interactive Hybrid Expert System to reduce expert dependency needed on the production floor. The Hybrid Expert System (HES) is comprised of CBR, flow analysis, post-processor and trouble shooting systems. The HES can provide the first set of operating parameters in order to achieve moldability condition and producing moldings free of stress cracks and warpage. In this work C++ programming language is used to implement the expert system. The Case-Based Reasoning sub-system is constructed to derive the optimum magnitude of process parameters in the cavity. Toward this end the Flow Analysis sub-system is employed to calculate the pressure drop and temperature difference in the feed system to determine the required magnitude of parameters at the nozzle. The Post-Processor is implemented to convert the molding parameters to machine setting parameters. The parameters designed by HES are implemented using the injection molding machine. In the presence of any molding defect, a trouble shooting subsystem can determine which combination of process parameters must be changed iii during the process to deal with possible variations. Constraints in relation to the application of this HES are as follows. - flow length (L) constraint: 40 mm < L < I 00 mm, - flow thickness (Th) constraint: -flow type: - material types: I mm < Th < 4 mm, unidirectional flow, High Impact Polystyrene (HIPS) and Acrylic. In order to test the HES, experiments were conducted and satisfactory results were obtained.