74 resultados para Dispersion Coefficients


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we derive a new nonlinear two-sided space-fractional diffusion equation with variable coefficients from the fractional Fick’s law. A semi-implicit difference method (SIDM) for this equation is proposed. The stability and convergence of the SIDM are discussed. For the implementation, we develop a fast accurate iterative method for the SIDM by decomposing the dense coefficient matrix into a combination of Toeplitz-like matrices. This fast iterative method significantly reduces the storage requirement of O(n2)O(n2) and computational cost of O(n3)O(n3) down to n and O(nlogn)O(nlogn), where n is the number of grid points. The method retains the same accuracy as the underlying SIDM solved with Gaussian elimination. Finally, some numerical results are shown to verify the accuracy and efficiency of the new method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background There is a need for better understanding of the dispersion of classification-related variable to develop an evidence-based classification of athletes with a disability participating in stationary throwing events. Objectives The purposes of this study are (A) to describe tools designed to comprehend and represent the dispersion of the performance between successive classes, and (B) to present this dispersion for the elite male and female stationary shot-putters who participated in Beijing 2008 Paralympic Games. Study design Retrospective study Methods This study analysed a total of 479 attempts performed by 114 male and female stationary shot-putters in three F30s (F32-F34) and six F50s (F52-F58) classes during the course of eight events during Beijing 2008 Paralympic Games. Results The average differences of best performance were 1.46±0.46 m for males between F54 and F58 classes as well as 1.06±1.18 m for females between F55 and F58 classes. The results demonstrated a linear relationship between best performance and classification while revealing two male Gold Medallists in F33 and F52 classes were outliers. Conclusions This study confirms the benefits of the comparative matrices, performance continuum and dispersion plots to comprehend classification-related variables. The work presented here represents a stepping stone into biomechanical analyses of stationary throwers, particularly on the eve of the London 2012 Paralympic Games where new evidences could be gathered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine the influence of lactose carrier size on drug dispersion of salmeterol xinafoate (SX) from interactive mixtures. SX dispersion was measured by using the fine particle fractions determined by a twin stage impinger attached to a Rotahaler1. The particle size of the lactose carrier in the SX interactive mixtures was varied using a range of commercial inhalation-grade lactoses. In addition, differing size fractions of individual lactose samples were achieved by dry sieving. The dispersion ofSXappeared to increase as the particle size of the lactose carrier decreased for the mixtures prepared from different particle size commercial samples of lactose and from different sieve fractions of the same lactose. Fine particles of lactose (<5 mm) associated with the lactose carrier were removed from the carrier surface by a wet decantation process to produce lactose samples with low but similar concentrations of fine lactose particles. The fine particle fractions of SX in mixtures prepared with the decanted lactose decreased significantly (analysis of variance, p<0.001) and the degree of dispersion became independent of the volume mean diameter of the carriers (analysis of variance, p<0.05). The dispersion behavior is therefore associated with the presence of fine adhered particles associated with the carriers and the inherent size of the carrier itself has little influence on dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose The role of fine lactose in the dispersion of salmeterol xinafoate (SX) from lactose mixtures was studied by modifying the fine lactose concentration on the surface of the lactose carriers using wet decantation. Methods Fine lactose was removed from lactose carriers by wet decantation using ethanol saturated with lactose. Particle sizing was achieved by laser diffraction. Fine particle fractions (FPFs) were determined by Twin Stage Impinger using a 2.5% SX mixture, and SX was analyzed by a validated high-performance liquid chromatography method. Adhesion forces between probes of SX and silica and the lactose surfaces were determined by atomic force microscopy. Results FPFs of SX were related to fine lactose concentration in the mixture for inhalation grade lactose samples. Reductions in FPF (2-4-fold) of Aeroflo 95 and 65 were observed after removing fine lactose by wet decantation; FPFs reverted to original values after addition of micronized lactose to decanted mixtures. FPFs of SX of sieved and decanted fractions of Aeroflo carriers were significantly different (p < 0.001). The relationship between FPF and fine lactose concentration was linear. Decanted lactose demonstrated surface modification through increased SX-lactose adhesion forces; however, any surface modification other than removal of fine lactose only slightly influenced FPF. Conclusions Fine lactose played a key and dominating role in controlling FPF. SX to fine lactose ratios influenced dispersion of SX with maximum dispersion occurring as the ratio approached unity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impulse propagation in biological tissues is known to be modulated by structural heterogeneity. In cardiac muscle, improved understanding on how this heterogeneity influences electrical spread is key to advancing our interpretation of dispersion of repolarization. We propose fractional diffusion models as a novel mathematical description of structurally heterogeneous excitable media, as a means of representing the modulation of the total electric field by the secondary electrical sources associated with tissue inhomogeneities. Our results, analysed against in vivo human recordings and experimental data of different animal species, indicate that structural heterogeneity underlies relevant characteristics of cardiac electrical propagation at tissue level. These include conduction effects on action potential (AP) morphology, the shortening of AP duration along the activation pathway and the progressive modulation by premature beats of spatial patterns of dispersion of repolarization. The proposed approach may also have important implications in other research fields involving excitable complex media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A global framework for linear stability analyses of traffic models, based on the dispersion relation root locus method, is presented and is applied taking the example of a broad class of car-following (CF) models. This approach is able to analyse all aspects of the dynamics: long waves and short wave behaviours, phase velocities and stability features. The methodology is applied to investigate the potential benefits of connected vehicles, i.e. V2V communication enabling a vehicle to send and receive information to and from surrounding vehicles. We choose to focus on the design of the coefficients of cooperation which weights the information from downstream vehicles. The coefficients tuning is performed and different ways of implementing an efficient cooperative strategy are discussed. Hence, this paper brings design methods in order to obtain robust stability of traffic models, with application on cooperative CF models

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many physical processes appear to exhibit fractional order behavior that may vary with time and/or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. In this paper, we consider a new space–time variable fractional order advection–dispersion equation on a finite domain. The equation is obtained from the standard advection–dispersion equation by replacing the first-order time derivative by Coimbra’s variable fractional derivative of order α(x)∈(0,1]α(x)∈(0,1], and the first-order and second-order space derivatives by the Riemann–Liouville derivatives of order γ(x,t)∈(0,1]γ(x,t)∈(0,1] and β(x,t)∈(1,2]β(x,t)∈(1,2], respectively. We propose an implicit Euler approximation for the equation and investigate the stability and convergence of the approximation. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical solutions of partial differential equation (PDE) models describing reactive transport phenomena in saturated porous media are often used as screening tools to provide insight into contaminant fate and transport processes. While many practical modelling scenarios involve spatially variable coefficients, such as spatially variable flow velocity, v(x), or spatially variable decay rate, k(x), most analytical models deal with constant coefficients. Here we present a framework for constructing exact solutions of PDE models of reactive transport. Our approach is relevant for advection-dominant problems, and is based on a regular perturbation technique. We present a description of the solution technique for a range of one-dimensional scenarios involving constant and variable coefficients, and we show that the solutions compare well with numerical approximations. Our general approach applies to a range of initial conditions and various forms of v(x) and k(x). Instead of simply documenting specific solutions for particular cases, we present a symbolic worksheet, as supplementary material, which enables the solution to be evaluated for different choices of the initial condition, v(x) and k(x). We also discuss how the technique generalizes to apply to models of coupled multispecies reactive transport as well as higher dimensional problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dispersion of aqueous γ-Y2Si2O7 suspensions, which contain only one component but have a complex ion environment, was studied by the introduction of two different polymer dispersants, polyethylenimine (PEI) and polyacrylic acid (PAA). The suspension without any dispersant remains stable in the pH range of 9-11.5 because of electrostatic repulsion, while it is flocculated upon stirring due to the readsorption of hydrolyzed ions on the colloid surface. However, suspensions with 1 dwb% PEI exhibit greater stability in the pH range of 4-11.5. The addition of PEI shifts the isoelectric point (IEP) of the suspensions from pH 5.8 to 10.8. Near the IEP (pHIEP=10.8), the stability of the suspensions with PEI is dominated by the steric effect. When the pH is decreased to acid direction, the stabilization mechanism is changed from steric hindrance to an electrosteric effect little by little. PAA also has the effect of reducing the hydrolysis speed via a "buffer effect" in the basic pH range, but the lack of adsorption between the highly ionized anionic polymer molecules and the negative colloid particle surfaces shows no positive effect on hydrolysis of colloids and on the stabilization of Y2Si 2O7 suspensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface chemistry and dispersion properties of aqueous Ti 3AlC2 suspension were studied in terms of hydrolysis, adsorption, electrokinetic, and rheological measurements. The Ti 3AlC2 particle had complex surface hydroxyl groups, such as ≡Ti-OH,=Al-OH, and -OTi-(OH)2, etc. The surface charging of the Ti3AlC2 particle and the ion environment of suspensions were governed by these surface groups, which thus strongly influenced the stability of Ti3AlC2 suspensions. PAA dispersant was added into the Ti3AlC2 suspension to depress the hydrolysis of the surface groups by the adsorption protection mechanism and to increase the stability of the suspension by the steric effect. Ti3AlC2 suspensions with 2.0 dwb% PAA had an excellent stability at pH=∼5 and presented the characteristics of Newtonian fluid. Based on the well-dispersed suspension, dense Ti3AlC2 materials were obtained by slip casting and after pressureless sintering. This work provides a feasible forming method for the engineering applications of MAX-phase ceramics, wherein complex shapes, large dimensions, or controlled microstructures are needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an estuary, mixing and dispersion resulting from turbulence and small scale fluctuation has strong spatio-temporal variability which cannot be resolved in conventional hydrodynamic models while some models employs parameterizations large water bodies. This paper presents small scale diffusivity estimates from high resolution drifters sampled at 10 Hz for periods of about 4 hours to resolve turbulence and shear diffusivity within a tidal shallow estuary (depth < 3 m). Taylor's diffusion theorem forms the basis of a first order estimate for the diffusivity scale. Diffusivity varied between 0.001 – 0.02 m2/s during the flood tide experiment. The diffusivity showed strong dependence (R2 > 0.9) on the horizontal mean velocity within the channel. Enhanced diffusivity caused by shear dispersion resulting from the interaction of large scale flow with the boundary geometries was observed. Turbulence within the shallow channel showed some similarities with the boundary layer flow which include consistency with slope of 5/3 predicted by Kolmogorov's similarity hypothesis within the inertial subrange. The diffusivities scale locally by 4/3 power law following Okubo's scaling and the length scale scales as 3/2 power law of the time scale. The diffusivity scaling herein suggests that the modelling of small scale mixing within tidal shallow estuaries can be approached from classical turbulence scaling upon identifying pertinent parameters.