62 resultados para Directional imbalance of freight rates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

- Introduction There is limited understanding of how young adults’ driving behaviour varies according to long-term substance involvement. It is possible that regular users of amphetamine-type stimulants (i.e. ecstasy (MDMA) and methamphetamine) may have a greater predisposition to engage in drink/drug driving compared to non-users. We compare offence rates, and self-reported drink/drug driving rates, for stimulant users and non-users in Queensland, and examine contributing factors. - Methods The Natural History Study of Drug Use is a prospective longitudinal study using population screening to recruit a probabilistic sample of amphetamine-type stimulant users and non-users aged 19-23 years. At the 4 ½ year follow-up, consent was obtained to extract data from participants’ Queensland driver records (ATS users: n=217, non-users: n=135). Prediction models were developed of offence rates in stimulant users controlling for factors such as aggression and delinquency. - Results Stimulant users were more likely than non-users to have had a drink-driving offence (8.7% vs. 0.8%, p < 0.001). Further, about 26% of ATS users and 14% of non-users self-reported driving under the influence of alcohol during the last 12 months. Among stimulant users, drink-driving was independently associated with last month high-volume alcohol consumption (Incident Rate Ratio (IRR): 5.70, 95% CI: 2.24-14.52), depression (IRR: 1.28, 95% CI: 1.07-1.52), low income (IRR: 3.57, 95% CI: 1.12-11.38), and male gender (IRR: 5.40, 95% CI: 2.05-14.21). - Conclusions Amphetamine-type stimulant use is associated with increased long-term risk of drink-driving, due to a number of behavioural and social factors. Inter-sectoral approaches which target long-term behaviours may reduce offending rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lithium-ion exchange rate capability of various commercial graphite materials are evaluated using galvanostatic charge/discharge cycling in a half-cell configuration over a wide range of C-rates (0.1 similar to 60C). The results confirm that graphite is capable of de-intercalating stored charge at high rates, but has a poor intercalating rate capability. Decreasing the graphite coating thickness leads to a limited rate performance improvement of the electrode. Reducing the graphite particle size shows enhanced C-rate capability but with increased irreversible capacity loss (ICL). It is demonstrated that the rate of intercalation of lithium-ions into the graphite is significantly limited compared with the corresponding rate of de-intercalation at high C-rates. For the successful utilisation of commercially available conventional graphite as a negative electrode in a lithium-ion capacitor (LIC), its intercalation rate capability needs to be improved or oversized to accommodate high charge rates.