151 resultados para DISPOSABLE GOLD ELECTRODES
Resumo:
We investigate the evolving quality of entrepreneurship in the Gold Coast Marine Precinct, a purpose-built industrial district in Southeast Queensland, Australia. Our findings are that the environment in the Precinct can be conducive to a better quality of entrepreneurship than may be feasible for firms in other settings; that a successful industrial district can be created artificially, with appropriate social relationships evolving afterwards; and that improvements in information and communications technology have undermined some aspects of traditional behaviour in the Precinct, but the essential nature of internal relationships remains intact.
Resumo:
The residence time distribution (RTD) is a crucial parameter when treating engine exhaust emissions with a Dielectric Barrier Discharge (DBD) reactor. In this paper, the residence time of such a reactor is investigated using a finite element based software: COMSOL Multiphysics 4.3. Non-thermal plasma (NTP) discharge is being introduced as a promising method for pollutant emission reduction. DBD is one of the most advantageous of NTP technologies. In a two cylinder co-axial DBD reactor, tubes are placed between two electrodes and flow passes through the annuals between these barrier tubes. If the mean residence time increases in a DBD reactor, there will be a corresponding increase in reaction time and consequently, the pollutant removal efficiency can increase. However, pollutant formation can occur during increased mean residence time and so the proportion of fluid that may remain for periods significantly longer than the mean residence time is of great importance. In this study, first, the residence time distribution is calculated based on the standard reactor used by the authors for ultrafine particle (10-500 nm) removal. Then, different geometrics and various inlet velocities are considered. Finally, for selected cases, some roughness elements added inside the reactor and the residence time is calculated. These results will form the basis for a COMSOL plasma and CFD module investigation.
Resumo:
The City of the Gold Coast in Queensland, Australia, will host the Commonwealth Games in 2018. In advance of the Games, the City is beginning to reposition the traditional marketing programs that were based around the four S’s- ‘sun, sand, surf and sex.’ There is a new emphasis on urban sophistication, sport, science, education and the environment. At the same time, local communities are asking for renewed attention to residential issues, particularly relating to recognising the importance of culture to the region. In this paper I explore the development of integrated computer technologies (ICTs) as a way of linking tourism, culture and place in the experience economy of the Gold Coast. The discussion is framed by theories of the post-tourist, contemporary cultural tourism and the role of mobile technologies, and the figure of the ‘referential tourist.’ An examination of stakeholder responses to changing business and social frameworks on the Gold Coast shows how discussions about a range of issues coalesce around cultural tourism. Local communities have the opportunity to engage with the new tourist as they move quickly between leisure and cultural experiences, at once connected to tourist expectations but increasingly self-directed. The Surfers Paradise Nights campaign, which is based around social media, is a case in point. This campaign aims to interest visitors in becoming a part of a familiar third place, an online space, but one that will sustain an emotive connection to the physical location and events. The paper also draws on research carried out in Brisbane, Queensland, in relation to building connections between place and culture on designated, self-directed journeys via iPhone technology. Participant responses indicate the importance of narrative to developing cultural frameworks.
Resumo:
Australia is the driest inhabited continent in the world and persisting droughts have triggered a move toward sensible and sustainable water consumption. Understanding how and where water is consumed in households enables streamlined development of demand management programs and efficient engineering of water infrastructure. End use water consumption analysis is required to gain necessary empirical data of how and where water is consumed. Several end use water consumption studies have been conducted within Australia and around the world with varying results produced. This pilot study paper provides preliminary data from the Gold Coast Watersaver End Use Project which is currently underway. Specifically, the paper includes water end use category volumetric and percentage break downs for 18 single and 32 dual reticulated homes on the Gold Coast (i.e. 50 in total). Moreover, a comparitive analysis between each of the individual households water end use levels is discussed along with other national studies previously completed. The paper finishes with an overview of the greater 200 home end use study conducted on the Gold Coast and its key deliverables and research outcomes.
Resumo:
This is the first research focusing on Gold Coast school libraries and teacher- librarians. It presents a detailed picture of library provision and staffing at a representative group of 27 government and non-government schools at the Gold Coast. It shows links between employment of a teacher-librarian and higher NAPLAN reading and writing scores. And it presents the principals’ generally positive views about teacher-librarians’ contribution to reading and literacy at their schools. The findings respond in part to the recent government inquiry’s call (House of Representatives, 2011) for research about the current staffing of school libraries in Australia, and the influence of school libraries and teacher-librarians on students’ literacy and learning outcomes. While the study has focused on a relatively small group of school libraries, it has produced a range of significant outcomes: • An extensive review of international and Australian research showing impacts of school libraries and teacher-librarians on students’ literacy and learning outcomes • Findings consistent with international research showing: - An inverse relationship between lower student to EFT library staff ratio and higher school NAPLAN scores for reading and writing - Schools that employ a teacher-librarian tend to achieve school NAPLAN scores for respective year levels that are higher than the national mean It is anticipated that the study’s findings will be of interest to education authorities, school leadership teams, teacher-librarians, teachers and researchers. The findings provide evidence to: • inform policy development and strategic planning for school libraries that respond to the literacy development needs of 21st century learners • inform school-based management of school libraries • inform curriculum development and teacher-librarian practice • support further collaborative research on a State or national level • enhance conceptual understandings about relationship(s) between school libraries, teacher-librarians and literacy/information literacy development • support advocacy about school libraries, teacher-librarians and their contribution to literacy development and student learning in Australian schools SLAQ President Toni Leigh comments: “It is heartening to see findings which validate the critical role teacher-librarians play in student literacy development and the positive correlation of higher NAPLAN scores and schools with a qualified teacher-librarian. Also encouraging is the high percentage of school principals who recognise the necessity of a well resourced school library and the positive influence of these libraries on student literacy”. This research arises from a research partnership between School Library Association of Queensland (SLAQ) and Children and Youth Research Centre, QUT. Lead researcher: Dr Hilary Hughes, Children and Youth Research Centre, QUT Research assistants: Dr Hossein Bozorgian, Dr Cherie Allan, Dr Michelle Dicinoski, QUT SLAQ Research Reference Group: Toni Leigh, Marj Osborne, Sally Fraser, Chris Kahl and Helen Reynolds Reference: House of Representatives. (2011). School libraries and teacher librarians in 21st century Australia. Canberra: Commonwealth of Australia. http://www.aph.gov.au/Parliamentary_Business/Committees/House_of_Representatives_Committees?url=ee/schoollibraries/report.htm
Resumo:
We have explored the potential of deep Raman spectroscopy, specifically surface enhanced spatially offset Raman spectroscopy (SESORS), for non-invasive detection from within animal tissue, by employing SERS-barcoded nanoparticle (NP) assemblies as the diagnostic agent. This concept has been experimentally verified in a clinic-relevant backscattered Raman system with an excitation line of 785 nm under ex vivo conditions. We have shown that our SORS system, with a fixed offset of 2-3 mm, offered sensitive probing of injected QTH-barcoded NP assemblies through animal tissue containing both protein and lipid. In comparison to that of non-aggregated SERS-barcoded gold NPs, we have demonstrated that the tailored SERS-barcoded aggregated NP assemblies have significantly higher detection sensitivity. We report that these NP assemblies can be readily detected at depths of 7-8 mm from within animal proteinaceous tissue with high signal-to-noise (S/N) ratio. In addition they could also be detected from beneath 1-2 mm of animal tissue with high lipid content, which generally poses a challenge due to high absorption of lipids in the near-infrared region. We have also shown that the signal intensity and S/N ratio at a particular depth is a function of the SERS tag concentration used and that our SORS system has a QTH detection limit of 10-6 M. Higher detection depths may possibly be obtained with optimization of the NP assemblies, along with improvements in the instrumentation. Such NP assemblies offer prospects for in vivo, non-invasive detection of tumours along with scope for incorporation of drugs and their targeted and controlled release at tumour sites. These diagnostic agents combined with drug delivery systems could serve as a “theranostic agent”, an integration of diagnostics and therapeutics into a single platform.
Resumo:
This paper reports research about school libraries, teacher-librarians and their contribution to literacy development. It presents an evidenced based snapshot, from the principals’ perspective, of 27 school libraries in the Gold Coast area of Australia. These new Australian findings show: • an evidenced based snapshot of school libraries and teacher-librarians, from the principals’ perspective • indications that school NAPLAN scores for reading and writing were generally higher when (a) student to library staff ratios were lower (i.e. better) and (b) the school had a teacher-librarian. The research responds to the Australian Government inquiry into school libraries and teacher-librarians (2010-11) which identified an urgent need for current data about provision and staffing of school libraries and their influence on student literacy and learning. In light of the National plan for school improvement (Australian Government, 2013), the findings are of potential interest to education authorities, school leadership teams, teacher-librarians, teachers and researchers. They offer evidence to inform policy development, strategic planning and advocacy about school libraries and teacher-librarians in supporting the reading, literacy and learning needs of 21st century learners.
Resumo:
This thesis is an innovative study for organic synthesis using supported gold nanoparticles as photocatalysts under visible light irradiation. It especially examines a novel green process for efficient hydroamination of alkynes with amines. The investigation of other traditional reduction and oxidation reactions also adds significantly to the knowledge of gold nanoparticles and titania nanofibres as photocatalysts for organic synthesis.
Resumo:
The cyclic voltammetry behaviour of gold in aqueous media is often regarded in very simple terms as a combination of two distinct processes, double layer charging/discharging and monolayer oxide formation/removal. This view is questioned here on the basis of both the present results and earlier independent data by other authors. It was demonstrated in the present case that both severe cathodization or thermal pretreatment of polycrystalline gold in acid solution resulted in the appearance of substantial Faradaic responses in the double layer region. Such anamolous behaviour, as outlined recently also for other metals, is rationalized in terms of the presence of active metal atoms (which undergo premonolayer oxidation) at the electrode surface. Such behaviour, which is also assumed to correspond to that of active sites on conventional gold surfaces, is assumed to be of vital importance in electrocatalysis; in many instances the latter process is also quite marked in the double layer region.
Resumo:
The study of the electrodeposition of polycrystalline gold in aqueous solution is important from the viewpoint that in electrocatalysis applications ill-defined micro- and nanostructured surfaces are often employed. In this work, the morphology of gold was controlled by the electrodeposition potential and the introduction of Pb(CH3COO)2•3H2O into the plating solution to give either smooth or nanostructured gold crystallites or large dendritic structures which have been characterized by scanning electron microscopy (SEM). The latter structures were achieved through a novel in situ galvanic replacement of lead with AuCl4−(aq) during the course of gold electrodeposition. The electrochemical behavior of electrodeposited gold in the double layer region was studied in acidic and alkaline media and related to electrocatalytic performance for the oxidation of hydrogen peroxide and methanol. It was found that electrodeposited gold is a significantly better electrocatalyst than a polished gold electrode; however, performance is highly dependent on the chosen deposition parameters. The fabrication of a deposit with highly active surface states, comparable to those achieved at severely disrupted metal surfaces through thermal and electrochemical methods, does not result in the most effective electrocatalyst. This is due to significant premonolayer oxidation that occurs in the double layer region of the electrodeposited gold. In particular, in alkaline solution, where gold usually shows the most electrocatalytic activity, these active surface states may be overoxidized and inhibit the electrocatalytic reaction. However, the activity and morphology of an electrodeposited film can be tailored whereby electrodeposited gold that exhibits nanostructure within the crystallites on the surface demonstrated enhanced electrocatalytic activity compared to smaller smooth gold crystallites and larger dendritic structures in potential regions well within the double layer region.
Resumo:
The ability of metals to store or trap considerable amounts of energy, and thus exist in a non-equilibrium or metastable state, is very well known in metallurgy; however, such behaviour, which is intimately connected with the defect character of metals, has been largely ignored in noble metal surface electrochemistry. Techniques for generating unusually high energy surface states for gold, and the unusual voltammetric responses of such states, are outlined. The surprisingly high (and complex) electrocatalytic activity of gold in aqueous media is attributed to the presence of a range of such non-equilibrium states as the vital entities at active sites on conventional gold surfaces. The possible relevance of these ideas to account for the remarkable catalytic activity of oxide-supported gold microparticles is briefly outlined.
Resumo:
The electrochemical reduction of TCNQ to TCNQ•- in acetonitrile in the presence of [Cu(MeCN)4]+ has been undertaken at boron-doped diamond (BDD) and indium tin oxide (ITO) electrodes. The nucleation and growth process at BDD is similar to that reported previously at metal electrodes. At an ITO electrode, the electrocrystallization of more strongly adhered, larger, branched, needle-shaped phase I CuTCNQ crystals is detected under potential step conditions and also when the potential is cycled over the potential range of 0.7 to −0.1 V versus Ag/AgCl (3 M KCl). Video imaging can be used at optically transparent ITO electrodes to monitor the growth stage of the very large branched crystals formed during the course of electrochemical experiments. Both in situ video imaging and ex situ X-ray diffraction and scanning electron microscopy (SEM) data are consistent with the nucleation of CuTCNQ taking place at a discrete number of preferred sites on the ITO surface. At BDD electrodes, ex situ optical images show that the preferential growth of CuTCNQ occurs at the more highly conducting boron-rich areas of the electrode, within which there are preferred sites for CuTCNQ formation.
Resumo:
Indium tin-oxide (ITO) and polycrystalline boron-doped diamond (BDD) have been examined in detail using the scanning electrochemical microscopy technique in feedback mode. For the interrogation of electrodes made from these materials, the choice of mediator has been varied. Using Ru(CN) 4− 6 (aq), ferrocene methanol (FcMeOH), Fe(CN) 3− 6 (aq) and Ru(NH 3) 3+ 6 (aq), approach curve experiments have been performed, and for purposes of comparison, calculations of the apparent heterogeneous electron transfer rates (k app) have been made using these data. In general, it would appear that values of k app are affected mainly by the position of the mediator reversible potential relative to the relevant semiconductor band edge (associated with majority carriers). For both the ITO (n type) and BDD (p type) electrodes, charge transfer is impeded and values are very low when using FcMeOH and Fe(CN) 3− 6 (aq) as mediators, and the use of Ru(NH 3) 3+ 6(aq) results in the largest value of k app. With ITO, the surface is chemically homogeneous and no variation is observed for any given mediator. Data is also presented where the potential of the ITO electrode is fixed using a ratio of the mediators Fe(CN) 3− 6(aq) and Fe(CN) 4− 6(aq). In stark contrast, the BDD electrode is quite the opposite and a range of k app values are observed for all mediators depending on the position on the surface. Both electrode surfaces are very flat and very smooth, and hence, for BDD, variations in feedback current imply a variation in the electrochemical activity. A comparison of the feedback current where the substrate is biased and unbiased shows a surprising degree of proportionality.
Resumo:
We demonstrate a simple electrochemical route to produce uniformly sized gold nanospikes without the need for a capping agent or prior modification of the electrode surface, which are predominantly oriented in the {111} crystal plane and exhibit promising electrocatalytic and SERS properties.