204 resultados para Cyclic Microindentations
Resumo:
Analysis by enzyme-linked immunosorbent assay showed that Rice tungro bacilliform virus (RTBV) accumulated in a cyclic pattern from early to late stages of infection in tungro-susceptible variety, Taichung Native 1 (TN1), and resistant variety, Balimau Putih, singly infected with RTBV or co-infected with RTBV+Rice tungro spherical virus (RTSV). These changes in virus accumulation resulted in differences in RTBV levels and incidence of infection. The virus levels were expressed relative to those of the susceptible variety and the incidence of infection was assessed at different weeks after inoculation. At a particular time point, RTBV levels in TN1 or Balimau Putih singly infected with RTBV were not significantly different from the virus level in plants co-infected with RTBV+RTSV. The relative RTBV levels in Balimau Putih either singly infected with RTBV or co-infected with RTBV+RTSV were significantly lower than those in TN1. The incidence of RTBV infection varied at different times in Balimau Putih but not in TN1, and to determine the actual infection, the number of plants that became infected at least once anytime during the 4wk observation period was considered. Considering the changes in RTBV accumulation, new parameters for analyzing RTBV resistance were established. Based on these parameters, Balimau Putih was characterized having resistance to virus accumulation although the actual incidence of infection was >75%.
Resumo:
Rural-urban migration continues to grow in many developing countries including Vietnam. The experience of stress and coping associated with this process may vary for people from different circumstances. However, there has been little research on migrants to date. This study adopts a qualitative approach to research on unregistered, male, migrant freelance labourers in urban Vietnam and to explore factors contributing to stress and coping among this population. The study revealed an array of stressors related to migrants' life experiences in urban space, including physical, financial and social factors. Coping was diverse, including problem-focused coping (PFC) and emotion-focused coping (EFC), pro-social and anti-social, active and passive. Less active and anti-social coping appeared common. Together, weak social network and lack of support from formal systems placed coping and adaptation in a cyclic relationship. The results highlight a multi-disciplinary approach to help cope and adapt effectively for these men.
Resumo:
The structures of bis(guanidinium)rac-trans-cyclohexane-1,2-dicarboxylate, 2(CH6N3+) C8H10O4- (I), guanidinium 3-carboxybenzoate monohydrate CH6N3+ C8H5O4- . H2O (II) and bis(guanidinium) benzene-1,4-dicarboxylate trihydrate, 2(CH6N3+) C8H4O4^2- . 3H2O (III) have been determined and the hydrogen bonding in each examined. All three compounds form three-dimensional hydrogen-bonded framework structures. In anhydrous (I), both guanidinium cations give classic cyclic R2/2(8) N--H...O,O'(carboxyl) and asymmetric cyclic R1/2(6) hydrogen-bonding interactions while one cation gives an unusual enlarged cyclic interaction with O acceptors of separate ortho-related carboxyl groups [graph set R2/2(11)]. Cations and anions also associate across inversion centres giving cyclic R2/4(8) motifs. In the 1:1 guanidinium salt (II), the cation gives two separate cyclic R1/2(6) interactions, one with a carboxyl O-acceptor, the other with the water molecule of solvation. The structure is unusual in that both carboxyl groups give short inter-anion O...H...O contacts, one across a crystallographic inversion centre [2.483(2)\%A], the other about a two-fold axis of rotation [2.462(2)\%A] with a half-occupancy hydrogen delocalized on the symmetry element in each. The water molecule links the cation--anion ribbon structures into a three-dimensional framework. In (III), the repeating molecular unit comprises a benzene-1,4-dicarboxylate dianion which lies across a crystallographic inversion centre, two guanidinium cations and two water molecules of solvation (each set related by two-fold rotational symmetry), and a single water molecule which lies on a two-fold axis. Each guanidinium cation gives three types of cyclic interactions with the dianions: one R^1^~2~(6), the others R2/3(8) and R3/3(10) (both of these involving the water molecules), giving a three-dimensional structure through bridges down the b cell direction. The water molecule at the general site also forms an unusual cyclic R2/2(4) homodimeric association across an inversion centre [O--H...O, 2.875(2)\%A]. The work described here provides further examples of the common cyclic guanidinium cation...carboxylate anion hydrogen-bonding associations as well as featuring other less common cyclic motifs.
Resumo:
In the title isonipecotamide salt 2C6H13N2O+.C12H8O6S22-,the asymmetric unit comprises one biphenyl-4,4'-disulfonate dianion which lies across a crystallographic inversion centre and another in a general position [dihedral angle between the two phenyl rings is 37.1(1)deg], together with three isonipecotamide cations. Two of these cations give a cyclic homomeric amide-amide dimer interaction [graph set R2/2(8)],the other giving a similar dimeric interaction but across an inversion centre, both dimers then forming lateral cyclic R2/4(8) pyrimidinium N-H...O interactions. These units are linked longitudinally to the sulfonate groups of the dianions through piperidinium N-H...O hydrogen bonds, giving a three-dimensional framework structure.
Resumo:
In the structure of the title compound, C6H13N2O+ C2H3O2- . H2O, the amide H atoms of the cations form centrosymetric cyclic hydrogen-bonding associations incorporating two water molecules [graph set R^2^~4~(8)], which are conjoint with cyclic water-bridged amide-amide associations [R^4^~4~(12)] and larger R4/4(20) associations involving the water molecule and the acetate anions, which bridge through the piperidinium H donors, giving an overall three-dimensional framework structure.
Resumo:
In the structure of the title compound, C6H13N2O+ C8H7O2- . 0.5H2O, the asymmetric unit comprises two isonipecotamide cations, two phenylacetate anions and a water molecule of solvation. The hydrogen-bonding environments for both sets of ion pairs are essentially identical with the piperidinium and amide 'ends' of each cation involved in lateral heteromolecular hydrogen-bonded cyclic N---H...O associations [graph set R2/2(11)] which incorporate a single carboxyl O-atom acceptor. These cyclic motifs enclose larger R5/5(21) cyclic systems forming sheet substructures which lie parallel to (101) and are linked across b by the single water molecule via water O---H...O(carboxyl) associations to give a two-dimensional duplex-sheet structure
Resumo:
The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (4-carbamoylpiperidine) with picric acid and 3,5-dinitrosalicylic acid, namely 4-carbamoylpiperidinium 2,4,6-trinitrophenolate, C6H13N2O8+ C6H2N3O7- (I) and 4-carbamoylpiperidinium 2-carboxy-4,6-dinitrophenolate, C6H13N2O8+ C7H3N2O7-: two forms, the monoclinic alpha-polymorph (II) and the triclinic beta-polymorph (III) have been determined at 200 K. All compounds form hydrogen-bonded structures, one-dimensional in (II), two-dimensional in (I) and three-dimensional in (III). In (I), the cations form centrosymmetric cyclic head-to-tail hydrogen-bonded homodimers [graph set R2/2(14)] through lateral duplex piperidinium N---H...O(amide) interactions. These dimers are extended into a two-dimensional network structure through further interactions with anion phenolate-O and nitro-O acceptors, including a direct symmetric piperidinium N-H...O(phenol),O(nitro) cation--anion association [graph set R2/1(6)]. The monoclinic polymorph (II) has a similar R2/1(6) cation-anion hydrogen-bonding interaction to (I) but with an additional conjoint symmetrical R1/2(4) interaction as well as head-to-tail piperidinium N-H...O(amide) O hydrogen bonds and amide N-H...O(carboxyl) hydrogen bonds, give a network structure which include large R3/4(20) rings. The hydrogen bonding in the triclinic polymorph (III) is markedly different from that of monoclinic (II). The asymmetric unit contains two independent cation-anion pairs which associate through cyclic piperidinium N-H...O,O'(carboxyl) interactions [graph set R2/1(4)]. The cations also show the zig-zag head-to-tail piperidinium N-H...O(amide) hydrogen-bonded chain substructures found in (II) but in addition feature amide N-H...O(nitro) and O(phenolate) and amide N-H...O(nitro) associations. As well there is a centrosymmetric double-amide N-H...O(carboxyl) bridged bis(cation-anion) ring system [graph set R2/4(8)] in the three-dimensional framework. The structures reported here demonstrate the utility of the isonipecotamide cation as a synthon with previously unrecognized potential for structure assembly applications. Furthermore, the structures of the two polymorphic 3,5-dinitrosalicylic acid salts show an unusual dissimilarity in hydrogen-bonding characteristics, considering that both were obtained from identical solvent systems.
Resumo:
The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with the three isomeric mononitro-substituted benzoic acids and 3,5-dinitrobenzoic acid, namely 4-carbamoylpiperidinium 2-nitrobenzoate (I), 4-carbamoylpiperidinium 3-nitrobenzoate (II), 4-carbamoylpiperidinium 4-nitrobenzoate (III), (C6H13N2O+ C7H4NO4-) and 4-carbamoylpiperidinium 3,5-dinitrobenzoate (IV) (C6H13N2O+ C7H5N2O6-)respectively, have been determined at 200 K. All salts form hydrogen-bonded structures: three-dimensional in (I), two-dimensional in (II) and (III) and one-dimensional in (IV). Featured in the hydrogen bonding of three of these [(I), (II) and (IV)] is the cyclic head-to-head amide--amide homodimer motif [graph set R2/2~(8)] through a duplex N---H...O association, the dimer then giving structure extension via either piperidinium or amide H-donors and carboxylate-O and in some examples [(II) and (IV)], nitro-O atom acceptors. In (I), the centrosymmetric amide-amide homodimers are expanded laterally through N-H...O hydrogen bonds via cyclic R2/4(8) interactions forming ribbons which extend along the c cell direction. These ribbons incorporate the 2-nitrobenzoate cations through centrosymmetric cyclic piperidine N-H...O(carboxyl) associations [graph set R4/4(12)], giving inter-connected sheets in the three-dimensional structure. In (II) in which no amide-amide homodimer is present, duplex piperidinium N-H...O(amide) hydrogen-bonding homomolecular associations [graph set R2/2(14)] give centrosymmetric head-to-tail dimers. Structure extension occurs through hydrogen-bonding associations between both the amide H-donors and carboxyl and nitro O-acceptors as well as a three-centre piperidinium N-H...O,O'(carboxyl) cyclic R2/1(4) association giving the two-dimensional network structure. In (III), the centrosymmetric amide-amide dimers are linked through the two carboxyl O-atom acceptors of the anions via bridging piperidinium and amide N-H...O,O'...H-N(amide) hydrogen bonds giving the two-dimensional sheet structure which features centrosymmetric cyclic R4/4(12) associations. In (IV), the amide-amide dimer is also centrosymmetric with the dimers linked to the anions through amide N-H...O(nitro) interactions. The piperidinium groups extend the structure into one-dimensional ribbons via N-H...O(carboxyl) hydrogen bonds. The structures reported here further demonstrate the utility of the isonipecotamide cation in molecular assembly and highlight the efficacy of the cyclic R2/2(8) amide-amide hydrogen-bonding homodimer motif in this process and provide an additional homodimer motif type in the head-to-tail R2/2(14) association.
Resumo:
For the fabrication of tissue engineering scaffolds, the intended tissue formation process imposes requirements on the architecture. The chosen porosity often is a tradeoff between volume and surface area accessible to cells, and mechanical properties of the construct. Interconnectivity of the pores is essential for cell migration through the scaffold and for mass transport. Conventional techniques such as salt leaching often result in heterogeneous structures and do not allow for a precise control of the architecture. Stereolithography is a rapid prototyping method that can be utilised to make 3D constructs with high spatial control by radical photopolymerisation. In this study, a regular structure based on cyclic repetition of cell units were designed through CAD modelling.. One of these structures was built on a stereolithography apparatus (SLA). Furthermore, a polylactide-based resin was developed that can be applied in stereolithography. Polylactide has proven before to be a well-performing polymer in bone tissue engineering. The final objective in this study is to build newly designed PDLLA scaffolds with a precise SLA fabrication technique to study the effect of scaffold architecture on mechanical and biological properties.
Resumo:
In the structure of the title compound, C6H13N2O+ C7H4NO5-, the isonipecotamide cations and the 5-nitrosalicylate anions form hydrogen-bonded chain substructures through head-to-tail piperidinium N---H...O(carboxyl) hydrogen bonds and through centrosymmetric cyclic head-to-head amide-amide hydrogen-bonding associations [graph set R2/2(8)]. These chains are cross linked by amide N---H...O~carboxyl~ and piperidinium N-H...O(nitro) associations to give a two-dimensional sheet structure.
Resumo:
The structures of two polymorphs of the anhydrous cocrystal adduct of bis(quinolinium-2-carboxylate) DL-malic acid, one triclinic the other monoclinic and disordered, have been determined at 200 K. Crystals of the triclinic polymorph 1 have space group P-1, with Z = 1 in a cell with dimensions a = 4.4854(4), b = 9.8914(7), c = 12.4670(8)Å, α = 79.671(5), β = 83.094(6), γ = 88.745(6)deg. Crystals of the monoclinic polymorph 2 have space group P21/c, with Z = 2 in a cell with dimensions a = 13.3640(4), b = 4.4237(12), c = 18.4182(5)Å, β = 100.782(3)deg. Both structures comprise centrosymmetric cyclic hydrogen-bonded quinolinic acid zwitterion dimers [graph set R2/2(10)] and 50% disordered malic acid molecules which lie across crystallographic inversion centres. However, the oxygen atoms of the malic acid carboxylic groups in 2 are 50% rotationally disordered whereas in 1 these are ordered. There are similar primary malic acid carboxyl O-H...quinaldic acid hydrogen-bonding chain interactions in each polymorph, extended into two-dimensional structures but in l this involves centrosymmetric cyclic head-to-head malic acid hydroxyl-carboxyl O-H...O interactions [graph set R2/2(10)] whereas in 2 the links are through single hydroxy-carboxyl hydrogen bonds.
Resumo:
In the structure of the title salt adduct, C6H13N2O+ C8H5O4- . C8H6O4, the asymmetric unit comprises one isonipecotamide cation, a hydrogen phthalate anion and a phthalic acid adduct molecule and form a two-dimensional hydrogen-bonded network through head-to-tail cation-anion-adduct molecule interactions which include a cyclic heteromolecular amide--carboxylate motif [graph set R2/2(8)], conjoint cyclic R2/2(6) and R3/3(10) piperidinium N-H...O(carboxyl) associations, as well as strong carboxylic acid O-H...O(carboxyl) hydrogen bonds.
Resumo:
Partially Grouted Reinforced Masonry (PGRM) shear walls perform well in places where the cyclonic wind pressure dominates the design. Their out-of-plane flexural performance is better understood than their inplane shear behaviour; in particular, it is not clear whether the PGRM shear walls act as unreinforced masonry (URM) walls embedded with discrete reinforced grouted cores or as integral systems of reinforced masonry (RM) with wider spacing of reinforcement. With a view to understanding the inplane response of PGRM shear walls, ten full scale single leaf, clay block walls were constructed and tested under monotonic and cyclic inplane loading cases. It has been shown that where the spacing of the vertical reinforcement is less than 2000mm, the walls behave as an integral system of RM; for spacing greater than 2000mm, the walls behave similar to URM with no significant benefit from the reinforced cores based on the displacement ductility and stiffness degradation factors derived from the complete lateral load – lateral displacement curves.
Resumo:
BACKGROUND: Treatment of proximal humerus fractures in elderly patients is challenging because of reduced bone quality. We determined the in vitro characteristics of a new implant developed to target the remaining bone stock, and compared it with an implant in clinical use. METHODS: Following osteotomy, left and right humeral pairs from cadavers were treated with either the Button-Fix or the Humerusblock fixation system. Implant stiffness was determined for three clinically relevant cases of load: axial compression, torsion, and varus bending. In addition, a cyclic varus-bending test was performed. RESULTS: We found higher stiffness values for the humeri treated with the ButtonFix system--with almost a doubling of the compression, torsion, and bending stiffness values. Under dynamic loading, the ButtonFix system had superior stiffness and less K-wire migration compared to the Humerusblock system. INTERPRETATION: When compared to the Humerusblock design, the ButtonFix system showed superior biomechanical properties, both static and dynamic. It offers a minimally invasive alternative for the treatment of proximal humerus fractures.
Resumo:
The structures of the 1:1 proton-transfer compounds of isonipecotamide (4-piperidinecarboxamide) with 4-nitrophthalic acid, 4-carbamoylpiperidinium 2-carboxy-4-nitrobenzoate, C6H13N2O8+ C8H4O6- (I), 4,5-dichlorophthalic acid, 4-carbamoylpiperidinium 2-carboxy-4,5-dichlorobenzoate, C6H13N2O8+ C8H3Cl2O4- (II) and 5-nitroisophthalic acid, 4-carbamoylpiperidinium 3-carboxy-5-nitrobenzoate, C6H13N2O8+ C8H4O6- (III) as well as the 2:1 compound with terephthalic acid, bis(4-carbamoylpiperidinium)benzene-1,2-dicarboxylate dihydrate, 2(C6H13N2O8+) C8H4O42- . 2H2O (IV)have been determined at 200 K. All salts form hydrogen-bonded structures, one-dimensional in (II) and three-dimensional in (I), (III) and (IV). In (I) and (III) the centrosymmetric R2/2(8) cyclic amide-amide association is found while in (IV) several different types of water-bridged cyclic associations are present [graph sets R2/4(8), R3/4(10), R4/4(12), R3/3(18) and R4/6(22)]. The one-dimensional structure of (I), features the common 'planar' hydrogen 4,5-dichlorophthalate anion together with enlarged cyclic R3/3(13) and R3/4(17) associations. With the structures of (I) and (III) the presence of head-to-tail hydrogen phthalate chain substructures is found. In (IV) head-to-tail primary cation-anion associations are extended longitudinally into chains through the water-bridged cation associations and laterally by piperidinium N-H...O(carboxyl) and water O-H...O(carboxyl) hydrogen bonds. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen-bonded structures. An additional example of cation--anion association with this cation is also shown in the asymmetric three-centre piperidinium N-H...O,O'(carboxyl) interaction in the first-reported structure of a 2:1 isonipecotamide-carboxylate salt.