355 resultados para Cross platform
Resumo:
This study examined the psychometric properties of an expanded version of the Algase Wandering Scale (Version 2) (AWS-V2) in a cross-cultural sample. A cross-sectional survey design was used. Study subjects were 172 English-speaking persons with dementia (PWD) from long-term care facilities in the USA, Canada, and Australia. Two or more facility staff rated each subject on the AWS-V2. Demographic and cognitive data (MMSE) were also obtained. Staff provided information on their own knowledge of the subject and of dementia. Separate factor analyses on data from two samples of raters each explained greater than 66% of the variance in AWS-V2 scores and validated four (persistent walking, navigational deficit, eloping behavior, and shadowing) of five factors in the original scale. Items added to create the AWS-V2 strengthened the shadowing subscale, failed to improve the routinized walking subscale, and added a factor, attention shifting as compared to the original AWS. Evidence for validity was found in significant correlations and ANOVAs between the AWS-V2 and most subscales with a single item indicator of wandering and with the MMSE. Evidence of reliability was shown by internal consistency of the AWS-V2 (0.87, 0.88) and its subscales (range 0.88 to 0.66), with Kappa for individual items (17 of 27 greater than 0.4), and ANOVAs comparing ratings across rater groups (nurses, nurse aids, and other staff). Analyses support validity and reliability of the AWS-V2 overall and for persistent walking, spatial disorientation, and eloping behavior subscales. The AWS-V2 and its subscales are an appropriate way to measure wandering as conceptualized within the Need-driven Dementia-compromised Behavior Model in studies of English-speaking subjects. Suggestions for further strengthening the scale and for extending its use to clinical applications are described.
Resumo:
The behaviour of cells cultured within three-dimensional (3D) structures rather than onto two-dimensional (2D) culture plastic more closely reflects their in vivo responses. Consequently, 3D culture systems are becoming crucial scientific tools in cancer cell research. We used a novel 3D culture concept to assess cell-matrix interactions implicated in carcinogenesis: a synthetic hydrogel matrix equipped with key biomimetic features, namely incorporated cell integrin-binding motifs (e.g. RGD peptides) and the ability of being degraded by cell-secreted proteases (e.g. matrix metalloproteases). As a cell model, we chose epithelial ovarian cancer, an aggressive disease typically diagnosed at an advanced stage when chemoresistance occurs. Both cell lines used (OV-MZ-6, SKOV-3) proliferated similarly in 2D, but not in 3D. Spheroid formation was observed exclusively in 3D when cells were embedded within hydrogels. By exploiting the design flexibility of the hydrogel characteristics, we showed that proliferation in 3D was dependent on cell-integrin engagement and the ability of cells to proteolytically remodel their extracellular microenvironment. Higher survival rates after exposure to the anti-cancer drug paclitaxel were observed in cell spheroids grown in hydrogels (40-60%) compared to cell monolayers in 2D (20%). Thus, 2D evaluation of chemosensitivity may not reflect pathophysiological events seen in patients. Because of the design flexibility of their characteristics and their stability in long-term cultures (28 days), these biomimetic hydrogels represent alternative culture systems for the increasing demand in cancer research for more versatile, physiologically relevant and reproducible 3D matrices.
Resumo:
Background: Factors that individually influence blood sugar control, health-related quality of life, and diabetes self-care behaviors have been widely investigated; however, most previous diabetes studies have not tested an integrated association between a series of factors and multiple health outcomes. ---------- Objectives: The purposes of this study are to identify risk factors and protective factors and to examine the impact of risk factors and protective factors on adaptive outcomes in people with type 2 diabetes.---------- Design: A descriptive correlational design was used to examine a theoretical model of risk factors, protective factors, and adaptive outcomes.---------- Settings: This study was conducted at the endocrine outpatient departments of three hospitals in Taiwan. Participants A convenience sample of 334 adults with type 2 diabetes aged 40 and over.---------- Methods: Data were collected by a self-reported questionnaire and physiological examination. Using the structural equation modeling technique, measurement and structural regression models were tested.---------- Results: Age and life events reflected the construct of risk factors. The construct of protective factors was explained by diabetes symptoms, coping strategy, and social support. The construct of adaptive outcomes comprised HbA1c, health-related quality of life, and self-care behaviors. Protective factors had a significant direct effect on adaptive outcomes (β = 0.68, p < 0.001); however, risk factors did not predict adaptive outcomes (β = − 0.48, p = 0.118).---------- Conclusions: Identifying and managing risk factors and protective factors are an integral part of diabetes care. This theoretical model provides a better understanding of how risk factors and protective factors work together to influence multiple adaptive outcomes in people living with type 2 diabetes.
Resumo:
The development of locally-based healthcare initiatives, such as community health coalitions that focus on capacity building programs and multi-faceted responses to long-term health problems, have become an increasingly important part of the public health landscape. As a result of their complexity and the level of investment, it has become necessary to develop innovative ways to help manage these new healthcare approaches. Geographical Information Systems (GIS) have been suggested as one of the innovative approaches that will allow community health coalitions to better manage and plan their activities. The focus of this paper is to provide a commentary on the use of GIS as a tool for community coalitions and discuss some of the potential benefits and issues surrounding the development of these tools.
Resumo:
To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepared by photoinitiated cross-linking of poly(dl-lactide)−dimethacrylate macromers (5 kg/mol) in the presence of an unreactive diluent. Using diffusion filtering and 2D correlation spectroscopy techniques, all network components are identified. By quantification of network-bound photoinitiator fragments, an average kinetic chain length of 9 ± 2 methacrylate units is determined. The PDLLA macromer solution was also used with a dye to prepare computer-designed structures by stereolithography. For these networks structures, the average kinetic chain length is 24 ± 4 methacrylate units. In all cases the calculated molecular weights of the polymethacrylate chains after degradation are maximally 8.8 kg/mol, which is far below the threshold for renal clearance. Upon incubation in phosphate buffered saline at 37 °C, the networks show a similar mass loss profile in time as linear high-molecular-weight PDLLA (HMW PDLLA). The mechanical properties are preserved longer for the PDLLA networks than for HMW PDLLA. The initial tensile strength of 47 ± 2 MPa does not decrease significantly for the first 15 weeks, while HMW PDLLA lost 85 ± 5% of its strength within 5 weeks. The physical properties, kinetic chain length, and degradation profile of these photo-cross-linked PDLLA networks make them most suited materials for orthopedic applications and use in (bone) tissue engineering.
Resumo:
Osteoarthritis (OA) is the most common musculoskeletal disorder and represents a major health burden to society. In the course of the pathological development of OA, articular cartilage chondrocytes (ACCs) undergo atypical phenotype changes characterized by the expression of hypertrophic differentiation markers. Also, the adjacent subchondral bone shows signs of abnormal mineral density and enhanced production of bone turnover markers, indicative of osteoblast dysfunction. Collectively these findings indicate that the pathological changes typical of OA, involve alterations of the phenotypic properties of cells in both the subchondral bone and articular cartilage. However, the mechanism(s) by which these changes occur during OA development are not completely understood. The purpose of this project was to address the question of how subchondral bone osteoblasts (SBOs) and ACCs interact with each other with respect to regulation of respective cells’ phenotypic properties and in particular the involvement of mitogen activated protein kinase (MAPK) signalling pathways under normal and OA joint condition. We also endeavoured to test the influence of cross-talk between SBOs and ACCs isolated from normal and OA joint on matrix metalloproteinase (MMP) expression. For this purpose tissues from the knees of OA patients and normal controls were collected to isolate SBOs and ACCs. The cellular cross-talk of SBOs and ACCs were studied by means of both direct and indirect co-culture systems, which made it possible to identify the role of both membrane bound and soluble factors. Histology, immunohistochemistry, qRT-PCR, zymography, ELISA and western blotting were some of the techniques applied to distinguish the changes in the co-cultured vs. non co-cultured cells. The MAPK signalling pathways were probed by using targeted MAPK inhibitors, and their activity monitored by western blot analysis using phospho MAPK specific antibodies. Our co-culture studies demonstrated that OA ACCs enhanced the SBOs differentiation compared to normal ACCs. We demonstrated that OA ACCs induced these phenotypic changes in the SBOs via activating an ERK1/2 signalling pathway. The findings from this study thus provided clear evidence that OA ACCs play an integral role in altering the SBO phenotype. In the second study, we tested the influence of normal SBOs and OA SBOs on ACCs phenotype changes. The results showed that OA SBOs increased the hypertrophic gene expression in co-cultured ACCs compared to normal SBOs, a phenotype which is considered as pathological to the health and integrity of articular cartilage. It was demonstrated that these phenotype changes occurred via de-activation of p38 and activation of ERK1/2 signaling pathways. These findings suggest that the pathological interaction of OA SBOs with ACCs is mediated by cross-talking between ERK1/2 and p38 pathways, resulting in ACCs undergoing hypertrophic differentiation. Subsequent experiments to determine the effect on MMP regulation, of SBOs and ACCs cross-talk, revealed that co-culturing OA SBOs with ACCs significantly enhanced the proteolytic activity and expression of MMP-2 and MMP-9. In turn, co-culture of OA ACCs with SBOs led to abundant MMP-2 expression in SBOs. Furthermore, we showed that the addition of ERK1/2 and JNK inhibitors reversed the elevated MMP-2 and MMP-9 production which otherwise resulted from the interactions of OA SBOs-ACCs. Thus, this study has demonstrated that the altered interactions between OA SBOs-ACCs are capable of triggering the pathological pathways leading to degenerative changes seen in the osteoarthritic joint. In conclusion, the body of work presented in this dissertation has given clear in vitro evidence that the altered bi-directional communication of SBOs and ACCs may play a role in OA development and that this process was mediated by MAPK signalling pathways. Targeting these altered interactions by the use of MAPK inhibitors may provide the scientific rationale for the development of novel therapeutic strategies in the treatment and management of OA.
Resumo:
A Flat Bed Rail Wagon (FBRW) has been proposed as an alternative solution for replacing bridges on low traffic volume roads. The subject matter for this paper is to investigate the impediment to load transfer from cross girders to main girder, through visually identifiable structural flaws. Namely, the effect of having large openings at close proximity to the connection of the main girder to the cross girder of a FBRW was examined. It was clear that openings locally reduce the section modulus of the secondary members; however it was unclear how these reductions would affect the load transfer to the main girder. The results are presented through modeling grillage action for which the loads applied onto the FBRW were distributed through cross girders to the main girder.
Resumo:
Mobile sensor platforms such as Autonomous Underwater Vehicles (AUVs) and robotic surface vessels, combined with static moored sensors compose a diverse sensor network that is able to provide macroscopic environmental analysis tool for ocean researchers. Working as a cohesive networked unit, the static buoys are always online, and provide insight as to the time and locations where a federated, mobile robot team should be deployed to effectively perform large scale spatiotemporal sampling on demand. Such a system can provide pertinent in situ measurements to marine biologists whom can then advise policy makers on critical environmental issues. This poster presents recent field deployment activity of AUVs demonstrating the effectiveness of our embedded communication network infrastructure throughout southern California coastal waters. We also report on progress towards real-time, web-streaming data from the multiple sampling locations and mobile sensor platforms. Static monitoring sites included in this presentation detail the network nodes positioned at Redondo Beach and Marina Del Ray. One of the deployed mobile sensors highlighted here are autonomous Slocum gliders. These nodes operate in the open ocean for periods as long as one month. The gliders are connected to the network via a Freewave radio modem network composed of multiple coastal base-stations. This increases the efficiency of deployment missions by reducing operational expenses via reduced reliability on satellite phones for communication, as well as increasing the rate and amount of data that can be transferred. Another mobile sensor platform presented in this study are the autonomous robotic boats. These platforms are utilized for harbor and littoral zone studies, and are capable of performing multi-robot coordination while observing known communication constraints. All of these pieces fit together to present an overview of ongoing collaborative work to develop an autonomous, region-wide, coastal environmental observation and monitoring sensor network.
Resumo:
The common approach to estimate bus dwell time at a BRT station is to apply the traditional dwell time methodology derived for suburban bus stops. In spite of being sensitive to boarding and alighting passenger numbers and to some extent towards fare collection media, these traditional dwell time models do not account for the platform crowding. Moreover, they fall short in accounting for the effects of passenger/s walking along a relatively longer BRT platform. Using the experience from Brisbane busway (BRT) stations, a new variable, Bus Lost Time (LT), is introduced in traditional dwell time model. The bus lost time variable captures the impact of passenger walking and platform crowding on bus dwell time. These are two characteristics which differentiate a BRT station from a bus stop. This paper reports the development of a methodology to estimate bus lost time experienced by buses at a BRT platform. Results were compared with the Transit Capacity and Quality of Servce Manual (TCQSM) approach of dwell time and station capacity estimation. When the bus lost time was used in dwell time calculations it was found that the BRT station platform capacity reduced by 10.1%.
Resumo:
The common approach to estimate bus dwell time at a BRT station platform is to apply the traditional dwell time methodology derived for suburban bus stops. Current dwell time models are sensitive towards bus type, fare collection policy along with the number of boarding and alighting passengers. However, they fall short in accounting for the effects of passenger/s walking on a relatively longer BRT station platform. Analysis presented in this paper shows that the average walking time of a passenger at BRT platform is 10 times more than that of bus stop. The requirement of walking to the bus entry door at the BRT station platform may lead to the bus experiencing a higher dwell time. This paper presents a theory for a BRT network which explains the loss of station capacity during peak period operation. It also highlights shortcomings of present available bus dwell time models suggested for the analysis of BRT operation.
Resumo:
The affects associated with culture, the values inherent in cultures and the identification of cultural assumptions are popular topics in recent management and Information Systems (IS) research. The main focus in relevant IS research over the years, has been on the comparison of cultural artifacts in different cultural settings. Despite these studies we need to ask whether there is a general approach to how culture can be researched in a rigorous manner? What are the issues that arise in cross- cultural research that have a bearing on decisions about a suitable research approach? What are the most appropriate methodologies to be used in cross-cultural research? Which is more appropriate, a qualitative, a quantitative or a mixed- method research approach? This paper will discuss important considerations in the process of deciding on the best research approach for cross-cultural projects. A case study will be then be reported as an example revealing the merits of integrating qualitative and quantitative approaches followed by a thorough discussion on the issues which may arise during this process.