543 resultados para Control framework
Resumo:
The nature and characteristics of how learners learn today are changing. As technology use in learning and teaching continues to grow, its integration to facilitate deep learning and critical thinking becomes a primary consideration. The implications for learner use, implementation strategies, design of integration frameworks and evaluation of their effectiveness in learning environments cannot be overlooked. This study specifically looked at the impact that technology-enhanced learning environments have on different learners’ critical thinking in relation to eductive ability, technological self-efficacy, and approaches to learning and motivation in collaborative groups. These were explored within an instructional design framework called CoLeCTTE (collaborative learning and critical thinking in technology-enhanced environments) which was proposed, revised and used across three cases. The field of investigation was restricted to three key questions: 1) Do learner skill bases (learning approach and eductive ability) influence critical thinking within the proposed CoLeCTTE framework? If so, how?; 2) Do learning technologies influence the facilitation of deep learning and critical thinking within the proposed CoLeCTTE framework? If so, how?; and 3) How might learning be designed to facilitate the acquisition of deep learning and critical thinking within a technology-enabled collaborative environment? The rationale, assumptions and method of research for using a mixed method and naturalistic case study approach are discussed; and three cases are explored and analysed. The study was conducted at the tertiary level (undergraduate and postgraduate) where participants were engaged in critical technical discourse within their own disciplines. Group behaviour was observed and coded, attributes or skill bases were measured, and participants interviewed to acquire deeper insights into their experiences. A progressive case study approach was used, allowing case investigation to be implemented in a "ladder-like" manner. Cases 1 and 2 used the proposed CoLeCTTE framework with more in-depth analysis conducted for Case 2 resulting in a revision of the CoLeCTTE framework. Case 3 used the revised CoLeCTTE framework and in-depth analysis was conducted. The findings led to the final version of the framework. In Cases 1, 2 and 3, content analysis of group work was conducted to determine critical thinking performance. Thus, the researcher used three small groups where learner skill bases of eductive ability, technological self-efficacy, and approaches to learning and motivation were measured. Cases 2 and 3 participants were interviewed and observations provided more in-depth analysis. The main outcome of this study is analysis of the nature of critical thinking within collaborative groups and technology-enhanced environments positioned in a theoretical instructional design framework called CoLeCTTE. The findings of the study revealed the importance of the Achieving Motive dimension of a student’s learning approach and how direct intervention and strategies can positively influence critical thinking performance. The findings also identified factors that can adversely affect critical thinking performance and include poor learning skills, frustration, stress and poor self-confidence, prioritisations over learning; and inadequate appropriation of group role and tasks. These findings are set out as instructional design guidelines for the judicious integration of learning technologies into learning and teaching practice for higher education that will support deep learning and critical thinking in collaborative groups. These guidelines are presented in two key areas: technology and tools; and activity design, monitoring, control and feedback.
Resumo:
Cross-Lingual Link Discovery (CLLD) is a new problem in Information Retrieval. The aim is to automatically identify meaningful and relevant hypertext links between documents in different languages. This is particularly helpful in knowledge discovery if a multi-lingual knowledge base is sparse in one language or another, or the topical coverage in each language is different; such is the case with Wikipedia. Techniques for identifying new and topically relevant cross-lingual links are a current topic of interest at NTCIR where the CrossLink task has been running since the 2011 NTCIR-9. This paper presents the evaluation framework for benchmarking algorithms for cross-lingual link discovery evaluated in the context of NTCIR-9. This framework includes topics, document collections, assessments, metrics, and a toolkit for pooling, assessment, and evaluation. The assessments are further divided into two separate sets: manual assessments performed by human assessors; and automatic assessments based on links extracted from Wikipedia itself. Using this framework we show that manual assessment is more robust than automatic assessment in the context of cross-lingual link discovery.
Resumo:
This study examined the beliefs underlying people’s decision-making, from a theory of planned behaviour (TPB) framework, in the prediction of curbside household waste recycling. Community members in Brisbane, Australia (N = 148) completed a questionnaire assessing the belief based TPB measures of attitudinal beliefs (costs and benefits), normative beliefs (important referents), and control beliefs (barriers) in relation to engaging in curbside household waste recycling for a 2-week period. Two weeks later, participants completed self report measures of recycling behaviour for the previous fortnight. The results revealed that the attitudinal, normative, and control beliefs for people who performed higher and lower levels of recycling differed significantly. A regression analysis identified both normative and control beliefs as the main determinants of recycling behaviour. For normative beliefs, high level recyclers perceived more approval from referents such as partners, friends, and neighbours to recycle all eligible materials. In addition, the strong results for control beliefs indicated that barriers such as forgetfulness, lack of time, and laziness were rated as more likely to hamper optimal recycling performance for low level recyclers. These findings provide important applied information about beliefs to target in the development of future community recycling campaigns.
Resumo:
Organisations are constantly seeking efficiency gains for their business processes in terms of time and cost. Management accounting enables detailed cost reporting of business operations for decision making purposes, although significant effort is required to gather accurate operational data. Process mining, on the other hand, may provide valuable insight into processes through analysis of events recorded in logs by IT systems, but its primary focus is not on cost implications. In this paper, a framework is proposed which aims to exploit the strengths of both fields in order to better support management decisions on cost control. This is achieved by automatically merging cost data with historical data from event logs for the purposes of monitoring, predicting, and reporting process-related costs. The on-demand generation of accurate, relevant and timely cost reports, in a style akin to reports in the area of management accounting, will also be illustrated. This is achieved through extending the open-source process mining framework ProM.
Resumo:
Besides responding to challenges of rapid urbanization and growing traffic congestion, the development of smart transport systems has attracted much attention in recent times. Many promising initiatives have emerged over the years. Despite these initiatives, there is still a lack of understanding about an appropriate definition of smart transport system. As such, it is challenging to identify the appropriate indicators of ‘smartness’. This paper proposes a comprehensive and practical framework to benchmark cities according to the smartness in their transportation systems. The proposed methodology was illustrated using a set of data collected from 26 cities across the world through web search and contacting relevant transport authorities and agencies. Results showed that London, Seattle and Sydney were among the world’s top smart transport cities. In particular, Seattle and Paris ranked high in smart private transport services while London and Singapore scored high on public transport services. London also appeared to be the smartest in terms of emergency transport services. The key value of the proposed innovative framework lies in a comparative analysis among cities, facilitating city-to-city learning.
Resumo:
This paper proposes an online learning control system that uses the strategy of Model Predictive Control (MPC) in a model based locally weighted learning framework. The new approach, named Locally Weighted Learning Model Predictive Control (LWL-MPC), is proposed as a solution to learn to control robotic systems with nonlinear and time varying dynamics. This paper demonstrates the capability of LWL-MPC to perform online learning while controlling the joint trajectories of a low cost, three degree of freedom elastic joint robot. The learning performance is investigated in both an initial learning phase, and when the system dynamics change due to a heavy object added to the tool point. The experiment on the real elastic joint robot is presented and LWL-MPC is shown to successfully learn to control the system with and without the object. The results highlight the capability of the learning control system to accommodate the lack of mechanical consistency and linearity in a low cost robot arm.
Resumo:
Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of theworld. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald’s formula for R0 and its entomological derivative, vectorial capacity, are nowused to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross–Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context formosquito blood feeding, themovement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control.
Resumo:
Traffic safety culture is a relatively new concept which has recently gained attention in the field of traffic safety. There is currently little known regarding the nature of the concept, nor how it should be defined. Preliminary definitions have tended to focus on specific road safety problems and the anticipated effect of a strong traffic safety culture. The literature to date has tended to emphasise how traffic safety culture might be created or shaped. However, without a better understanding of the nature and structure of traffic safety culture, discussions regarding changes to traffic safety culture are restricted. An examination of different conceptualisations and definitions of organisational safety culture provides a preliminary theoretical framework for traffic safety culture. Two high risk driving behaviours within the Australian context are compared to illustrate how key factors within this framework can be used to understand and improve road safety outcomes.
Resumo:
Motion control systems have a significant impact on the performance of ships and marine structures allowing them to perform tasks in severe sea states and during long periods of time. Ships are designed to operate with adequate reliability and economy, and in order to achieve this, it is essential to control the motion. For each type of ship and operation performed (transit, landing a helicopter, fishing, deploying and recovering loads, etc.), there are not only desired motion settings, but also limits on the acceptable (undesired) motion induced by the environment. The task of a ship motion control system is therefore to act on the ship so it follows the desired motion as closely as possible. This book provides an introduction to the field of ship motion control by studying the control system designs for course-keeping autopilots with rudder roll stabilisation and integrated rudder-fin roll stabilisation. These particular designs provide a good overview of the difficulties encountered by designers of ship motion control systems and, therefore, serve well as an example driven introduction to the field. The idea of combining the control design of autopilots with that of fin roll stabilisers, and the idea of using rudder induced roll motion as a sole source of roll stabilisation seems to have emerged in the late 1960s. Since that time, these control designs have been the subject of continuous and ongoing research. This ongoing interest is a consequence of the significant bearing that the control strategy has on the performance and the issues associated with control system design. The challenges of these designs lie in devising a control strategy to address the following issues: underactuation, disturbance rejection with a non minimum phase system, input and output constraints, model uncertainty, and large unmeasured stochastic disturbances. To date, the majority of the work reported in the literature has focused strongly on some of the design issues whereas the remaining issues have been addressed using ad hoc approaches. This has provided an additional motivation for revisiting these control designs and looking at the benefits of applying a contemporary design framework, which can potentially address the majority of the design issues.
Resumo:
In Chapters 1 through 9 of the book (with the exception of a brief discussion on observers and integral action in Section 5.5 of Chapter 5) we considered constrained optimal control problems for systems without uncertainty, that is, with no unmodelled dynamics or disturbances, and where the full state was available for measurement. More realistically, however, it is necessary to consider control problems for systems with uncertainty. This chapter addresses some of the issues that arise in this situation. As in Chapter 9, we adopt a stochastic description of uncertainty, which associates probability distributions to the uncertain elements, that is, disturbances and initial conditions. (See Section 12.6 for references to alternative approaches to model uncertainty.) When incomplete state information exists, a popular observer-based control strategy in the presence of stochastic disturbances is to use the certainty equivalence [CE] principle, introduced in Section 5.5 of Chapter 5 for deterministic systems. In the stochastic framework, CE consists of estimating the state and then using these estimates as if they were the true state in the control law that results if the problem were formulated as a deterministic problem (that is, without uncertainty). This strategy is motivated by the unconstrained problem with a quadratic objective function, for which CE is indeed the optimal solution (˚Astr¨om 1970, Bertsekas 1976). One of the aims of this chapter is to explore the issues that arise from the use of CE in RHC in the presence of constraints. We then turn to the obvious question about the optimality of the CE principle. We show that CE is, indeed, not optimal in general. We also analyse the possibility of obtaining truly optimal solutions for single input linear systems with input constraints and uncertainty related to output feedback and stochastic disturbances.We first find the optimal solution for the case of horizon N = 1, and then we indicate the complications that arise in the case of horizon N = 2. Our conclusion is that, for the case of linear constrained systems, the extra effort involved in the optimal feedback policy is probably not justified in practice. Indeed, we show by example that CE can give near optimal performance. We thus advocate this approach in real applications.
Resumo:
Dynamic positioning of marine craft refers to the use of the propulsion system to regulate the vessel position and heading. This type of motion control is commonly used in the offshore industry for surface vessels, and it is also used for some underwater vehicles. In this paper, we use a port-Hamiltonian framework to design a novel nonlinear set-point-regulation controller with integral action. The controller handles input saturation and guarantees internal stability, rejection of unknown constant disturbances, and (integral-)input-to-state stability.
Resumo:
In this paper, we consider a passivity-based approach for the design of a control law of multiple ship-roll gyro-stabiliser units. We extend previous work on control of ship roll gyro-stabilisation by considering the problem within a nonlinear framework. In particular, we derive an energy-based model using the port-Hamiltonian theory and then design an active precession controller using passivity-based control interconnection and damping assignment. The design considers the possibility of having multiple gyro-stabiliser units, and the desired potential energy of the system (in closed loop) is chosen to behave like a barrier function, which allows us to enforce constraints on the precession angle of the gyros.
Resumo:
Validation is an important issue in the development and application of Bayesian Belief Network (BBN) models, especially when the outcome of the model cannot be directly observed. Despite this, few frameworks for validating BBNs have been proposed and fewer have been applied to substantive real-world problems. In this paper we adopt the approach by Pitchforth and Mengersen (2013), which includes nine validation tests that each focus on the structure, discretisation, parameterisation and behaviour of the BBNs included in the case study. We describe the process and result of implementing a validation framework on a model of a real airport terminal system with particular reference to its effectiveness in producing a valid model that can be used and understood by operational decision makers. In applying the proposed validation framework we demonstrate the overall validity of the Inbound Passenger Facilitation Model as well as the effectiveness of the validity framework itself.
Resumo:
This paper considers the manoeuvring of underactuated surface vessels. The control objective is to steer the vessel to reach a manifold which encloses a waypoint. A transformation of configuration variables and a potential field are used in a Port-Hamiltonian framework to design an energy-based controller. With the proposed controller, the geometric task associated with the manoeuvring problem depends on the desired potential energy (closed-loop) and the dynamic task depends on the total energy and damping. Therefore, guidance and motion control are addressed jointly, leading to model-energy-based trajectory generation.
Resumo:
This paper presents a novel control strategy for velocity tracking of Permanent Magnet Synchronous Machines (PMSM). The model of the machine is considered within the port-Hamiltonian framework and a control is designed using concepts of immersion and invariance (I&I) recently developed in the literature. The proposed controller ensures internal stability and output regulation, and it forces integral action on non-passive outputs.