195 resultados para Conservative pact


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strategic communication is held to be a key process by which organisations respond to environmental uncertainty. In the received view articulated in the literatures of organisational communication and public relations, strategic communication results from collaborative efforts by organisational members to create shared understanding about environmental uncertainty and, as a result of this collective understanding, formulate appropriate communication responses. In this study, I explore how such collaborative efforts towards the development of strategic communication are derived from, and bounded by, culturally shared values and assumptions. Study of the influences of an organisation‟s culture on the formulation of strategic communication is a fundamental conceptual challenge for public relations and, to date, a largely unaddressed area of research. This thesis responds to this challenge by describing a key property of organisational culture – the action of cultural selection (Durham, 1992). I integrate this property of cultural selection to extend and refine the descriptive range of Weick‟s (1969, 1979) classic sociocultural model of organizing. From this integration I propose a new model, the Cultural Selection of Strategic Communication (CSSC). Underpinning the CSSC model is the central proposition that because of the action of cultural selection during organizing processes, the inherently conservative properties of an organisation‟s culture constrain development of effective strategic communication in ways that may be unrelated to the outcomes of “environmental scanning” and other monitoring functions heralded by the public relations literature as central to organisational adaptation. Thus, by examining the development of strategic communication, I describe a central conservative influence on the social ecology of organisations. This research also responds to Butschi and Steyn‟s (2006) call for the development of theory focusing on strategic communication as well as Grunig (2006) and Sriramesh‟s (2007) call for research to further understand the role of culture in public relations practice. In keeping with the explorative and descriptive goals of this study, I employ organisational ethnography to examine the influence of cultural selection on the development of strategic communication. In this methodological approach, I use the technique of progressive contextualisation to compare data from two related but distinct cultural settings. This approach provides a range of descriptive opportunities to permit a deeper understanding of the work of cultural selection. Findings of this study propose that culture, operating as a system of shared and socially transmitted social knowledge, acts through the property of cultural selection to influence decision making, and decrease conceptual variation within a group. The findings support the view that strategic communication, as a cultural product derived from the influence of cultural selection, is an essential feature to understand the social ecology of an organisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metallic materials exposed to oxygen-enriched atmospheres – as commonly used in the medical, aerospace, aviation and numerous chemical processing industries – represent a significant fire hazard which must be addressed during design, maintenance and operation. Hence, accurate knowledge of metallic materials flammability is required. Reduced gravity (i.e. space-based) operations present additional unique concerns, where the absence of gravity must also be taken into account. The flammability of metallic materials has historically been quantified using three standardised test methods developed by NASA, ASTM and ISO. These tests typically involve the forceful (promoted) ignition of a test sample (typically a 3.2 mm diameter cylindrical rod) in pressurised oxygen. A test sample is defined as flammable when it undergoes burning that is independent of the ignition process utilised. In the standardised tests, this is indicated by the propagation of burning further than a defined amount, or „burn criterion.. The burn criterion in use at the onset of this project was arbitrarily selected, and did not accurately reflect the length a sample must burn in order to be burning independent of the ignition event and, in some cases, required complete consumption of the test sample for a metallic material to be considered flammable. It has been demonstrated that a) a metallic material.s propensity to support burning is altered by any increase in test sample temperature greater than ~250-300 oC and b) promoted ignition causes an increase in temperature of the test sample in the region closest to the igniter, a region referred to as the Heat Affected Zone (HAZ). If a test sample continues to burn past the HAZ (where the HAZ is defined as the region of the test sample above the igniter that undergoes an increase in temperature of greater than or equal to 250 oC by the end of the ignition event), it is burning independent of the igniter, and should be considered flammable. The extent of the HAZ, therefore, can be used to justify the selection of the burn criterion. A two dimensional mathematical model was developed in order to predict the extent of the HAZ created in a standard test sample by a typical igniter. The model was validated against previous theoretical and experimental work performed in collaboration with NASA, and then used to predict the extent of the HAZ for different metallic materials in several configurations. The extent of HAZ predicted varied significantly, ranging from ~2-27 mm depending on the test sample thermal properties and test conditions (i.e. pressure). The magnitude of the HAZ was found to increase with increasing thermal diffusivity, and decreasing pressure (due to slower ignition times). Based upon the findings of this work, a new burn criterion requiring 30 mm of the test sample to be consumed (from the top of the ignition promoter) was recommended and validated. This new burn criterion was subsequently included in the latest revision of the ASTM G124 and NASA 6001B international test standards that are used to evaluate metallic material flammability in oxygen. These revisions also have the added benefit of enabling the conduct of reduced gravity metallic material flammability testing in strict accordance with the ASTM G124 standard, allowing measurement and comparison of the relative flammability (i.e. Lowest Burn Pressure (LBP), Highest No-Burn Pressure (HNBP) and average Regression Rate of the Melting Interface(RRMI)) of metallic materials in normal and reduced gravity, as well as determination of the applicability of normal gravity test results to reduced gravity use environments. This is important, as currently most space-based applications will typically use normal gravity information in order to qualify systems and/or components for reduced gravity use. This is shown here to be non-conservative for metallic materials which are more flammable in reduced gravity. The flammability of two metallic materials, Inconel® 718 and 316 stainless steel (both commonly used to manufacture components for oxygen service in both terrestrial and space-based systems) was evaluated in normal and reduced gravity using the new ASTM G124-10 test standard. This allowed direct comparison of the flammability of the two metallic materials in normal gravity and reduced gravity respectively. The results of this work clearly show, for the first time, that metallic materials are more flammable in reduced gravity than in normal gravity when testing is conducted as described in the ASTM G124-10 test standard. This was shown to be the case in terms of both higher regression rates (i.e. faster consumption of the test sample – fuel), and burning at lower pressures in reduced gravity. Specifically, it was found that the LBP for 3.2 mm diameter Inconel® 718 and 316 stainless steel test samples decreased by 50% from 3.45 MPa (500 psia) in normal gravity to 1.72 MPa (250 psia) in reduced gravity for the Inconel® 718, and 25% from 3.45 MPa (500 psia) in normal gravity to 2.76 MPa (400 psia) in reduced gravity for the 316 stainless steel. The average RRMI increased by factors of 2.2 (27.2 mm/s in 2.24 MPa (325 psia) oxygen in reduced gravity compared to 12.8 mm/s in 4.48 MPa (650 psia) oxygen in normal gravity) for the Inconel® 718 and 1.6 (15.0 mm/s in 2.76 MPa (400 psia) oxygen in reduced gravity compared to 9.5 mm/s in 5.17 MPa (750 psia) oxygen in normal gravity) for the 316 stainless steel. Reasons for the increased flammability of metallic materials in reduced gravity compared to normal gravity are discussed, based upon the observations made during reduced gravity testing and previous work. Finally, the implications (for fire safety and engineering applications) of these results are presented and discussed, in particular, examining methods for mitigating the risk of a fire in reduced gravity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Approximately 20 years have passed now since the NTSB issued its original recommendation to expedite development, certification and production of low-cost proximity warning and conflict detection systems for general aviation [1]. While some systems are in place (TCAS [2]), ¡¨see-and-avoid¡¨ remains the primary means of separation between light aircrafts sharing the national airspace. The requirement for a collision avoidance or sense-and-avoid capability onboard unmanned aircraft has been identified by leading government, industry and regulatory bodies as one of the most significant challenges facing the routine operation of unmanned aerial systems (UAS) in the national airspace system (NAS) [3, 4]. In this thesis, we propose and develop a novel image-based collision avoidance system to detect and avoid an upcoming conflict scenario (with an intruder) without first estimating or filtering range. The proposed collision avoidance system (CAS) uses relative bearing ƒÛ and angular-area subtended ƒê , estimated from an image, to form a test statistic AS C . This test statistic is used in a thresholding technique to decide if a conflict scenario is imminent. If deemed necessary, the system will command the aircraft to perform a manoeuvre based on ƒÛ and constrained by the CAS sensor field-of-view. Through the use of a simulation environment where the UAS is mathematically modelled and a flight controller developed, we show that using Monte Carlo simulations a probability of a Mid Air Collision (MAC) MAC RR or a Near Mid Air Collision (NMAC) RiskRatio can be estimated. We also show the performance gain this system has over a simplified version (bearings-only ƒÛ ). This performance gain is demonstrated in the form of a standard operating characteristic curve. Finally, it is shown that the proposed CAS performs at a level comparable to current manned aviations equivalent level of safety (ELOS) expectations for Class E airspace. In some cases, the CAS may be oversensitive in manoeuvring the owncraft when not necessary, but this constitutes a more conservative and therefore safer, flying procedures in most instances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eccentric exercise is the conservative treatment of choice for mid-portion Achilles tendinopathy. While there is a growing body of evidence supporting the medium to long term efficacy of eccentric exercise in Achilles tendinopathy treatment, very few studies have investigated the short term response of the tendon to eccentric exercise. Moreover, the mechanisms through which tendinopathy symptom resolution occurs remain to be established. The primary purpose of this thesis was to investigate the acute adaptations of the Achilles tendon to, and the biomechanical characteristics of, the eccentric exercise protocol used for Achilles tendinopathy rehabilitation and a concentric equivalent. The research was conducted with an orientation towards exploring potential mechanisms through which eccentric exercise may bring about a resolution of tendinopathy symptoms. Specifically, the morphology of tendinopathic and normal Achilles tendons was monitored using high resolution sonography prior to and following eccentric and concentric exercise, to facilitate comparison between the treatment of choice and a similar alternative. To date, the only proposed mechanism through which eccentric exercise is thought to result in symptom resolution is the increased variability in motor output force observed during eccentric exercise. This thesis expanded upon prior work by investigating the variability in motor output force recorded during eccentric and concentric exercises, when performed at two different knee joint angles, by limbs with and without symptomatic tendinopathy. The methodological phase of the research focused on establishing the reliability of measures of tendon thickness, tendon echogenicity, electromyography (EMG) of the Triceps Surae and the standard deviation (SD) and power spectral density (PSD) of the vertical ground reaction force (VGRF). These analyses facilitated comparison between the error in the measurements and experimental differences identified as statistically significant, so that the importance and meaning of the experimental differences could be established. One potential limitation of monitoring the morphological response of the Achilles tendon to exercise loading is that the Achilles tendon is continually exposed to additional loading as participants complete the walking required to carry out their necessary daily tasks. The specific purpose of the last experiment in the methodological phase was to evaluate the effect of incidental walking activity on Achilles tendon morphology. The results of this study indicated that walking activity could decrease Achilles tendon thickness (negative diametral strain) and that the decrease in thickness was dependent on both the amount of walking completed and the proximity of walking activity to the sonographic examination. Thus, incidental walking activity was identified as a potentially confounding factor for future experiments which endeavoured to monitor changes in tendon thickness with exercise loading. In the experimental phase of this thesis the thickness of Achilles tendons was monitored prior to and following isolated eccentric and concentric exercise. The initial pilot study demonstrated that eccentric exercise resulted in a greater acute decrease in Achilles tendon thickness (greater diametral strain) compared to an equivalent concentric exercise, in participants with no history of Achilles tendon pain. This experiment was then expanded to incorporate participants with unilateral Achilles tendinopathy. The major finding of this experiment was that the acute decrease in Achilles tendon thickness observed following eccentric exercise was modified by the presence of tendinopathy, with a smaller decrease (less diametral strain) noted for tendinopathic compared to healthy control tendon. Based on in vitro evidence a decrease in tendon thickness is believed to reflect extrusion of fluid from the tendon with loading. This process would appear to be limited by the presence of pathology and is hypothesised to be a result of the changes in tendon structure associated with tendinopathy. Load induced fluid movement may be important to the maintenance of tendon homeostasis and structure as it has the potential to enhance molecular movement and stimulate tendon remodelling. On this basis eccentric exercise may be more beneficial to the tendon than concentric exercise. Finally, EMG and motor output force variability (SD and PSD of VGRF) were investigated while participants with and without tendinopathy performed the eccentric and concentric exercises. Although between condition differences were identified as statistically significant for a number of force variability parameters, the differences were not greater than the limits of agreement for repeated measures. Consequently the meaning and importance of these findings were questioned. Interestingly, the EMG amplitude of all three Triceps Surae muscles did not vary with knee joint angle during the performance of eccentric exercise. This raises questions pertaining to the functional importance of performing the eccentric exercise protocol at each of the two knee joint angles as it is currently prescribed. EMG amplitude was significantly greater during concentric compared to eccentric muscle actions. Differences in the muscle activation patterns may result in different stress distributions within the tendon and be related to the different diametral strain responses observed for eccentric and concentric muscle actions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary genetic risk factor in multiple sclerosis (MS) is the HLA-DRB1*1501 allele; however, much of the remaining genetic contribution to MS has yet to be elucidated. Several lines of evidence support a role for neuroendocrine system involvement in autoimmunity which may, in part, be genetically determined. Here, we comprehensively investigated variation within eight candidate hypothalamic-pituitary-adrenal (HPA) axis genes and susceptibility to MS. A total of 326 SNPs were investigated in a discovery dataset of 1343 MS cases and 1379 healthy controls of European ancestry using a multi-analytical strategy. Random Forests, a supervised machine-learning algorithm, identified eight intronic SNPs within the corticotrophin-releasing hormone receptor 1 or CRHR1 locus on 17q21.31 as important predictors of MS. On the basis of univariate analyses, six CRHR1 variants were associated with decreased risk for disease following a conservative correction for multiple tests. Independent replication was observed for CRHR1 in a large meta-analysis comprising 2624 MS cases and 7220 healthy controls of European ancestry. Results from a combined meta-analysis of all 3967 MS cases and 8599 controls provide strong evidence for the involvement of CRHR1 in MS. The strongest association was observed for rs242936 (OR = 0.82, 95% CI = 0.74-0.90, P = 9.7 × 10-5). Replicated CRHR1 variants appear to exist on a single associated haplotype. Further investigation of mechanisms involved in HPA axis regulation and response to stress in MS pathogenesis is warranted. © The Author 2010. Published by Oxford University Press. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While it is generally accepted in the learning and teaching literature that assessment is the single biggest influence on how students approach their learning, assessment methods within higher education are generally conservative and inflexible. Constrained by policy and accreditation requirements and the need for the explicit articulation of assessment standards for public accountability purposes, assessment tasks can fail to engage students or reflect the tasks students will face in the world of practice. Innovative assessment design can simultaneously deliver program objectives and active learning through a knowledge transfer process which increases student participation. This social constructivist view highlights that acquiring an understanding of assessment processes, criteria and standards needs active student participation. Within this context, a peer-assessed, weekly, assessment task was introduced in the first “serious” accounting subject offered as part of an undergraduate degree. The positive outcomes of this assessment innovation was that student failure rates declined 15%, tutorial participation increased fourfold, tutorial engagement increased six-fold and there was a 100% approval rating for the retention of the assessment task. In contributing to the core conference theme of “seismic” shifts within higher education, in stark contrast to the positive student response, staff-related issues of assessment conservatism and the necessity of meeting increasing research commitments, threatened the assessment task’s survival. These opposing forces to change have the potential to weaken the ability of higher education assessment arrangements to adequately serve either a new generation of students or the sector's community stakeholders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While it is generally accepted in the learning and teaching literature that assessment is the single biggest influence on how students approach their learning, assessment methods within higher education are generally conservative and inflexible. Constrained by policy and accreditation requirements and the need for the explicit articulation of assessment standards for public accountability purposes, assessment tasks can fail to engage students or reflect the tasks students will face in the world of practice. Innovative assessment design can simultaneously deliver program objectives and active learning through a knowledge transfer process which increases student participation. This social constructivist view highlights that acquiring an understanding of assessment processes, criteria and standards needs active student participation. Within this context, a peer-assessed, weekly, assessment task was introduced in the first “serious” accounting subject offered as part of an undergraduate degree. The positive outcomes of this assessment innovation was that student failure rates declined 15%, tutorial participation increased fourfold, tutorial engagement increased six-fold and there was a 100% approval rating for the retention of the assessment task. In contributing to the core conference theme of “seismic” shifts within higher education, in stark contrast to the positive student response, staff-related issues of assessment conservatism and the necessity of meeting increasing research commitments, threatened the assessment task’s survival. These opposing forces to change have the potential to weaken the ability of higher education assessment arrangements to adequately serve either a new generation of students or the sector's community stakeholders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New knowledge has raised a concern about the cost-ineffective design methods and the true performance of railroad prestressed concrete ties. Because of previous knowledge deficiencies, railway civil and track engineers have been aware of the conservative design methods for structural components in any railway track that rely on allowable stresses and material strength reductions. In particular, railway sleeper (or railroad tie) is an important component of railway tracks and is commonly made of prestressed concrete. The existing code for designing such components makes use of the permissible stress design concept, whereas the fiber stresses over cross sections at initial and final stages are limited by some empirical values. It is believed that the concrete ties complying with the permissible stress concept possess unduly untapped fracture toughness, based on a number of proven experiments and field data. Collaborative research run by the Australian Cooperative Research Centre for Railway Engineering and Technologies (Rail CRC) was initiated to ascertain the reserved capacity of Australian railway prestressed concrete ties that were designed using the existing design code. The findings have led to the development of a new limit-states design concept. This paper highlights the conventional and the new limit-states design philosophies and their implication to both the railway community and the public. © 2011 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the international level, the higher education sector is currently being subjected to increased calls for public accountability and the current move by the OECD to rank universities based on the quality of their teaching and learning outcomes. At the national level, Australian universities and their teaching staff face numerous challenges including financial restrictions, increasing student numbers and the reality of an increasingly diverse student population. The Australian higher education response to these competing policy and accreditation demands focuses on precise explicit systems and procedures which are inflexible and conservative and which ignore the fact that assessment is the single biggest influence on how students approach their learning. By seriously neglecting the quality of student learning outcomes, assessment tasks are often failing to engage students or reflect the tasks students will face in the world of practice. Innovative assessment design, which includes new paradigms of student engagement and learning and pedagogically based technologies have the capacity to provide some measure of relief from these internal and external tensions by significantly enhancing the learning experience for an increasingly time-poor population of students. That is, the assessment process has the ability to deliver program objectives and active learning through a knowledge transfer process which increases student participation and engagement. This social constructivist view highlights the importance of peer review in assisting students to participate and collaborate as equal members of a community of scholars with both their peers and academic staff members. As a result of increasing the student’s desire to learn, peer review leads to more confident, independent and reflective learners who also become more skilled at making independent judgements of their own and others' work. Within this context, in Case Study One of this project, a summative, peer-assessed, weekly, assessment task was introduced in the first “serious” accounting subject offered as part of an undergraduate degree. The positive outcomes achieved included: student failure rates declined 15%; tutorial participation increased fourfold; tutorial engagement increased six-fold; and there was a 100% student-based approval rating for the retention of the assessment task. However, in stark contrast to the positive student response, staff issues related to the loss of research time associated with the administration of the peer-review process threatened its survival. This paper contributes to the core conference topics of new trends and experiences in undergraduate assessment education and in terms of innovative, on-line, learning and teaching practices, by elaborating the Case Study Two “solution” generated to this dilemma. At the heart of the resolution is an e-Learning, peer-review process conducted in conjunction with the University of Melbourne which seeks to both create a virtual sense of belonging and to efficiently and effectively meet academic learning objectives with minimum staff involvement. In outlining the significant level of success achieved, student-based qualitative and quantitative data will be highlighted along with staff views in a comparative analysis of the advantages and disadvantages to both students and staff of the staff-led, peer review process versus its on-line counterpart.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel beam produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. It has the beneficial characteristics of torsionally rigid closed rectangular flanges combined with economical fabrication processes from a single strip of high strength steel. Although the LSB sections are commonly used as flexural members, no research has been undertaken on the shear behaviour of LSBs. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of LSBs. In this research finite element models of LSBs were developed to investigate their nonlinear shear behaviour including their buckling characteristics and ultimate shear strength. They were validated by comparing their results with available experimental results. The models provided full details of the shear buckling and strength characteristics of LSBs, and showed the presence of considerable improvements to web shear buckling in LSBs and associated post-buckling strength. This paper presents the details of the finite element models of LSBs and the results. Both finite element analysis and experimental results showed that the current design rules in cold-formed steel codes are very conservative for the shear design of LSBs. The ultimate shear capacities from finite element analyses confirmed the accuracy of proposed shear strength equations for LSBs based on the North American specification and DSM design equations. Developed finite element models were used to investigate the reduction to shear capacity of LSBs when full height web side plates were not used or when only one web side plate was used, and these results are also presented in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: The LiteSteel Beam (LSB) is a new cold-formed hollow flange channel section produced using dual electric resistance welding and automated continuous roll-forming technologies. The innovative LSB sections have many beneficial characteristics and are commonly used as flexural members in building construction. However, limited research has been undertaken on the shear behaviour of LSBs. Therefore a detailed investigation including both numerical and experimental studies was undertaken to investigate the shear behaviour of LSBs. Finite element models of LSBs in shear were developed to simulate the nonlinear ultimate strength behaviour of LSBs including their elastic buckling characteristics, and were validated by comparing their results with experimental test results. Validated finite element models were then used in a detailed parametric study into the shear behaviour of LSBs. The parametric study results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LSBs. Significant improvements to web shear buckling occurred due to the presence of torsionally rigid rectangular hollow flanges while considerable post-buckling strength was also observed. This paper therefore proposes improved shear strength design rules for LSBs within the current cold-formed steel code guidelines. It presents the details of the parametric study and the new shear strength equations. The new equations were also developed based on the direct strength method. The proposed shear strength equations have the potential to be used with other conventional cold-formed steel sections such as lipped channel sections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. The LSBs are commonly used as floor joists and bearers with web openings in residential, industrial and commercial buildings. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. However, no research has been undertaken on the shear behaviour and strength of LSBs with web openings. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of LSBs with web openings. In this research, finite element models of LSBs with web openings in shear were developed to simulate the shear behaviour and strength of LSBs including their buckling characteristics. They were then validated by comparing their results with available experimental test results and used in a detailed parametric study. The results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LSBs with web openings. Improved design equations have been proposed for the shear capacity of LSBs with web openings based on both experimental and parametric study results. An alternative shear design method based on an equivalent reduced web thickness was also proposed. It was found that the same shear strength design rules developed for LSBs without web openings can be used for LSBs with web openings provided the equivalent reduced web thickness equation developed in this paper is used. This is a significant advancement as it simplifies the shear design methods of LSBs with web openings considerably.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: The LiteSteel Beam (LSB) is a new cold-formed steel hollow flange channel beam recently developed in Australia. It is commonly used as a floor joist or bearer in buildings. Current practice in flooring systems is to include openings in the web element of floor joists or bearers so that building services can be located within them. Shear behaviour of LSBs with web openings is more complicated while their shear strengths are considerably reduced by the presence of web openings. However, no research has been undertaken on the shear behaviour and strength of LSBs with web openings. Therefore a detailed experimental study involving 26 shear tests was undertaken on simply supported LSB test specimens with web openings and an aspect ratio of 1.5. This paper presents the details of this experimental study and the results of their shear capacities and behavioural characteristics. Experimental results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LSBs with web openings. Improved design equations have been proposed for the shear strength of LSBs with web openings based on the experimental results from this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The project is a book collection of 65 poems, primarily with an environmental focus. This practice-led project draws on eco-critical theory (Wilson, 1992; and Bate, 2000) and Darwinian literary theory (Carroll, 2004) to explore ideas of ecology, the ‘natural’, and conservation. The poems explore a proposal of synthesis: that nature is for us both a construction of language/culture (as argued by post structuralism/ cultural studies) and also a pragmatic, empirical entity that can be experienced through the senses as well as through culture. For example, individual poems describe genres of ‘forest’ (‘Literary Forests’, ‘The Conservative Forest’, ‘The Imperial Forest’) which demonstrate how ‘nature’ can be culturally constructed, but also remain an empirical entity with which we experience a more immediate, physical connection, as posited by Bate (following Heidegger’s ‘being-in-the-world’) . The work also explores through satire the concept of evolutionary adaptation, for example the integration of machine into forest (‘The Black Forest’), animals adopting human characteristics (‘In Praise of Bears’), and ‘nature’ as a damaged or absent ‘other’. Without an Alibi makes various strands of theoretical thinking concrete and manifest by ‘showing not telling’, in creative practice. The work has been high positively reviewed in the prestigious Australian Book Review, and by Professor Peter Pierce in the Canberra Times. Several of the poems have since been reproduced in national anthologies including The Penguin Anthology of Australian Poetry (2000) and Australian Poetry Since 1988 (Uni of NSW Press).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The LiteSteel Beam (LSB) is a new cold-formed hollow flange channel section developed by OneSteel Australian Tube Mills using their patented dual electric resistance welding and automated continuous roll-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. In addition to this unique geometry, the LSB sections also have unique characteristics relating to their stress-strain curves, residual stresses, initial geometric imperfections and hollow flanges that are not encountered in conventional hot-rolled and cold-formed steel channel sections. An experimental study including 20 section moment capacity tests was therefore conducted to investigate the behaviour and strength of LSB flexural members. The presence of inelastic reserve bending capacity in these beams was investigated in detail although the current design rules generally limit the section moment capacities of cold-formed steel members to their first yield moments. The ultimate moment capacities from the tests were compared with the section moment capacities predicted by the current cold-formed and hot-rolled steel design standards. It was found that compact and non-compact LSB sections have greater moment capacities than their first yield moments. The current cold-formed steel design standards were found to be conservative in predicting the section moment capacities of compact and non-compact LSB sections while the hot-rolled steel design standards were able to better predict them. This paper has shown that suitable modifications are needed to the current design rules to allow the inclusion of available inelastic bending capacities of LSBs in design.