73 resultados para Confocal laser scanning microscopy (CLSM)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The palette of fluorescent proteins (FPs) has grown exponentially over the past decade, and as a result, live imaging of cells expressing fluorescently tagged proteins is becoming more and more mainstream. Spinning disk confocal (SDC) microscopy is a high-speed optical sectioning technique and a method of choice to observe and analyze intracellular FP dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low-noise scientific grade-cooled charge-coupled device cameras, and can achieve frame rates of up to 1000 frames per second. In this chapter, we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy and provide a rationale for specific design choices. We also give guidelines of how other imaging techniques such as total internal reflection microscopy or spatially controlled photoactivation can be coupled with SDC imaging and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Improved glycemic control is the only treatment that has been shown to be effective for diabetic peripheral neuropathy in patients with type 1 diabetes (1). Continuous subcutaneous insulin infusion (CSII) is superior to multiple daily insulin injection (MDI) for reducing HbA1c and hypoglycemic events (2). Here, we have compared the benefits of CSII compared withMDI for neuropathy over 24months....

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mineral tilleyite-Y, a carbonate-silicate of calcium, has been studied by scanning electron microscopy with chemical analysis using energy dispersive spectroscopy (EDX) and Raman and infrared spectroscopy. Multiple carbonate stretching modes are observed and support the concept of non-equivalent carbonate units in the tilleyite structure. Multiple Raman and infrared bands in the OH stretching region are observed, proving the existence of water in different molecular environments in the structure of tilleyite. Vibrational spectroscopy offers new information on the mineral tilleyite.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The combination of nanostenciling with pulsed laser deposition (PLD) provides a flexible, fast approach for patterning the growth of Ge on Si. Within each stencilled site, the morphological evolution of the Ge structures with deposition follows a modified Stranski–Krastanov (SK) growth mode. By systematically varying the PLD parameters (laser repetition rate and number of pulses) on two different substrate orientations (111 and 100), we have observed corresponding changes in growth morphology, strain and elemental composition using scanning electron microscopy, atomic force microscopy and μ-Raman spectroscopy. The growth behaviour is well predicted within a classical SK scheme, although the Si(100) growth exhibits significant relaxation and ripening with increasing coverage. Other novel aspects of the growth include the increased thickness of the wetting layer and the kinetic control of Si/Ge intermixing via the PLD repetition rate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE Corneal confocal microscopy is a novel diagnostic technique for the detection of nerve damage and repair in a range of peripheral neuropathies, in particular diabetic neuropathy. Normative reference values are required to enable clinical translation and wider use of this technique. We have therefore undertaken a multicenter collaboration to provide worldwide age-adjusted normative values of corneal nerve fiber parameters. RESEARCH DESIGN AND METHODS A total of 1,965 corneal nerve images from 343 healthy volunteers were pooled from six clinical academic centers. All subjects underwent examination with the Heidelberg Retina Tomograph corneal confocal microscope. Images of the central corneal subbasal nerve plexus were acquired by each center using a standard protocol and analyzed by three trained examiners using manual tracing and semiautomated software (CCMetrics). Age trends were established using simple linear regression, and normative corneal nerve fiber density (CNFD), corneal nerve fiber branch density (CNBD), corneal nerve fiber length (CNFL), and corneal nerve fiber tortuosity (CNFT) reference values were calculated using quantile regression analysis. RESULTS There was a significant linear age-dependent decrease in CNFD (-0.164 no./mm(2) per year for men, P < 0.01, and -0.161 no./mm(2) per year for women, P < 0.01). There was no change with age in CNBD (0.192 no./mm(2) per year for men, P = 0.26, and -0.050 no./mm(2) per year for women, P = 0.78). CNFL decreased in men (-0.045 mm/mm(2) per year, P = 0.07) and women (-0.060 mm/mm(2) per year, P = 0.02). CNFT increased with age in men (0.044 per year, P < 0.01) and women (0.046 per year, P < 0.01). Height, weight, and BMI did not influence the 5th percentile normative values for any corneal nerve parameter. CONCLUSIONS This study provides robust worldwide normative reference values for corneal nerve parameters to be used in research and clinical practice in the study of diabetic and other peripheral neuropathies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE This study determined if deficits in corneal nerve fiber length (CNFL) assessed using corneal confocal microscopy (CCM) can predict future onset of diabetic peripheral neuropathy (DPN). RESEARCH DESIGN AND METHODS CNFL and a range of other baseline measures were compared between 90 nonneuropathic patients with type 1 diabetes who did or did not develop DPN after 4 years. The receiver operator characteristic (ROC) curve was used to determine the capability of single and combined measures of neuropathy to predict DPN. RESULTS DPN developed in 16 participants (18%) after 4 years. Factors predictive of 4-year incident DPN were lower CNFL (P = 0.041); longer duration of diabetes (P = 0.002); higher triglycerides (P = 0.023); retinopathy (higher on the Early Treatment of Diabetic Retinopathy Study scale) (P = 0.008); nephropathy (higher albumin-to-creatinine ratio) (P = 0.001); higher neuropathy disability score (P = 0.037); lower cold sensation (P = 0.001) and cold pain (P = 0.027) thresholds; higher warm sensation (P = 0.008), warm pain (P = 0.024), and vibration (P = 0.003) thresholds; impaired monofilament response (P = 0.003); and slower peroneal (P = 0.013) and sural (P = 0.002) nerve conduction velocity. CCM could predict the 4-year incident DPN with 63% sensitivity and 74% specificity for a CNFL threshold cutoff of 14.1 mm/mm2 (area under ROC curve = 0.66, P = 0.041). Combining neuropathy measures did not improve predictive capability. CONCLUSIONS DPN can be predicted by various demographic, metabolic, and conventional neuropathy measures. The ability of CCM to predict DPN broadens the already impressive diagnostic capabilities of this novel ophthalmic marker.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plasma polymerisation was used to deposit thin oligomeric films of terpinen-4-ol on a range of substrates. The coatings were examined in terms of their chemical properties and surface architecture to ascertain the changes in chemical composition as a result of exposure to the plasma field. The antifouling and antimicrobial activity of oligomeric terpinen-4-ol coatings were then examined against such human pathogens as Staphylococcus aureus, Pseudomonas aeruginosa and Staphylococcus epidermis. The bacterial adhesion patterns were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and confocal scanning laser microscopy (CSLM).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the synthesis and characterization of a novel organic polymer coating for the prevention of the growth of Pseudomonas aeruginosa on the solid surface of three-dimensional objects. Substrata were encapsulated with polyterpenol thin films prepared from terpinen-4-ol using radio frequency plasma enhanced chemical vapor deposition. Terpinen-4-ol is a constituent of tea tree oil with known antibacterial properties. The influence of deposition power on the chemical structure, surface composition, and ultimately the antibacterial inhibitory activity of the resulting polyterpenol thin films was studied using X-ray photoelectron spectroscopy (XPS), water contact angle measurement, atomic force microscopy (AFM), and 3-D interactive visualization and statistical approximation of the topographic profiles. The experimental results were consistent with those predicted by molecular simulations. The extent of bacterial attachment and extracellular polymeric substances (EPS) production was analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Polyterpenol films deposited at lower power were particularly effective against P. aeruginosa due to the preservation of original terpinen-4-ol molecules in the film structure. The proposed antimicrobial and antifouling coating can be potentially integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Radio frequency plasma enhanced chemical vapor deposition is currently used to fabricate a broad range of functional coatings. This work described fabrication and characterization of a novel bioactive coating, polyterpenol, for encapsulation of three-dimensional indwelling medical devices. The materials are synthesized from monoterpene alcohols under different input power conditions. The chemical composition and structure of the polyterpenol thin films were determined by Xray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, contact angle measurements, and atomic force microscopy (AFM). The application of polyterpenol coating to the substrate reduced surface roughness from 1.5 to 0.4 of a nanometer, and increased the water contact angle from to 9 to 72 degrees. The extent of attachment and extracellular polysaccharide (EPS) production of two medically relevant pathogens, Staphylococcus aureus and Staphylococcus epidermis were analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Application of polyterpenol coating fabricated at 10 W significantly inhibited attachment and growth of both pathogens compared to unmodified substrates, whilst addition of 50 W films resulted in an increased attachment, proliferation and EPS production by both types of bacteria when compared to unmodified surface. Marked dissimilarity in bacterial response between two coatings was attributed to changes in surface chemistry, nano-architecture and surface energy of polymer thin films deposited under different input power conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective Corneal innervation is increasingly used as a surrogate marker of human diabetic peripheral neuropathy (DPN) however its temporal relationship with the other microvascular complications of diabetes is not fully established. In this cross-sectional, observational study we aimed to assess whether neuropathy occurred in patients with type 1 diabetes, without retinopathy or microalbuminuria. Materials and Methods All participants underwent detailed assessment of peripheral neuropathy [neuropathy disability score (NDS), vibration perception threshold (VPT), peroneal motor nerve conduction velocity (PMNCV), sural sensory nerve conduction velocity (SSNCV) and in vivo corneal confocal microscopy (IVCCM)], retinopathy (digital fundus photography) and albuminuria status [albumin: creatinine ratio (ACR)]. Results 53 patients with Type 1 diabetes with (n=37) and without retinopathy (n=16) were compared to control subjects (n=27). SSNCV, corneal nerve fibre (CNFD) and branch (CNBD) density and length (CNFL) were reduced significantly (p<0.001) in diabetic patients without retinopathy compared to control subjects. Furthermore, CNFD, CNBD and CNFL were also significantly (p<0.001) reduced in diabetic patients without microalbuminuria (n=39), compared to control subjects. Greater neuropathic severity was associated with established retinopathy and microalbuminuria. Conclusions IVCCM detects early small fibre damage in the absence of retinopathy or microalbuminuria in patients with Type 1 diabetes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE Quantitative assessment of small fiber damage is key to the early diagnosis and assessment of progression or regression of diabetic sensorimotor polyneuropathy (DSPN). Intraepidermal nerve fiber density (IENFD) is the current gold standard, but corneal confocal microscopy (CCM), an in vivo ophthalmic imaging modality, has the potential to be a noninvasive and objective image biomarker for identifying small fiber damage. The purpose of this study was to determine the diagnostic performance of CCM and IENFD by using the current guidelines as the reference standard. RESEARCH DESIGN AND METHODS Eighty-nine subjects (26 control subjects and 63 patients with type 1 diabetes), with and without DSPN, underwent a detailed assessment of neuropathy, including CCM and skin biopsy. RESULTS Manual and automated corneal nerve fiber density (CNFD) (P < 0.0001), branch density (CNBD) (P < 0.0001) and length (CNFL) (P < 0.0001), and IENFD (P < 0.001) were significantly reduced in patients with diabetes with DSPN compared with control subjects. The area under the receiver operating characteristic curve for identifying DSPN was 0.82 for manual CNFD, 0.80 for automated CNFD, and 0.66 for IENFD, which did not differ significantly (P = 0.14). CONCLUSIONS This study shows comparable diagnostic efficiency between CCM and IENFD, providing further support for the clinical utility of CCM as a surrogate end point for DSPN.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: In vivo corneal confocal microscopy (CCM) is increasingly used as a surrogate endpoint in studies of diabetic polyneuropathy (DPN). However, it is not clear whether imaging the central cornea provides optimal diagnostic utility for DPN. Therefore, we compared nerve morphology in the central cornea and the inferior whorl, a more distal and densely innervated area located inferior and nasal to the central cornea. METHODS: A total of 53 subjects with type 1/type 2 diabetes and 15 age-matched control subjects underwent detailed assessment of neuropathic symptoms (NPS), deficits (neuropathy disability score [NDS]), quantitative sensory testing (vibration perception threshold [VPT], cold and warm threshold [CT/WT], and cold- and heat-induced pain [CIP/HIP]), and electrophysiology (sural and peroneal nerve conduction velocity [SSNCV/PMNCV], and sural and peroneal nerve amplitude [SSNA/PMNA]) to diagnose patients with (DPN+) and without (DPN-) neuropathy. Corneal nerve fiber density (CNFD) and length (CNFL) in the central cornea, and inferior whorl length (IWL) were quantified. RESULTS: Comparing control subjects to DPN- and DPN+ patients, there was a significant increase in NDS (0 vs. 2.6 ± 2.3 vs. 3.3 ± 2.7, P < 0.01), VPT (V; 5.4 ± 3.0 vs. 10.6 ± 10.3 vs. 17.7 ± 11.8, P < 0.01), WT (°C; 37.7 ± 3.5 vs. 39.1 ± 5.1 vs. 41.7 ± 4.7, P < 0.05), and a significant decrease in SSNCV (m/s; 50.2 ± 5.4 vs. 48.4 ± 5.0 vs. 39.5 ± 10.6, P < 0.05), CNFD (fibers/mm2; 37.8 ± 4.9 vs. 29.7 ± 7.7 vs. 27.1 ± 9.9, P < 0.01), CNFL (mm/mm2; 27.5 ± 3.6 vs. 24.4 ± 7.8 vs. 20.7 ± 7.1, P < 0.01), and IWL (mm/mm2; 35.1 ± 6.5 vs. 26.2 ± 10.5 vs. 23.6 ± 11.4, P < 0.05). For the diagnosis of DPN, CNFD, CNFL, and IWL achieved an area under the curve (AUC) of 0.75, 0.74, and 0.70, respectively, and a combination of IWL-CNFD achieved an AUC of 0.76. CONCLUSIONS: The parameters of CNFD, CNFL, and IWL have a comparable ability to diagnose patients with DPN. However, IWL detects an abnormality even in patients without DPN. Combining IWL with CNFD may improve the diagnostic performance of CCM.