82 resultados para Cloud Computing Modelli di Business
Resumo:
Submission to the Australian Government Attorney General’s Department consultation paper on Revising the Scope of the Copyright ‘Safe Harbour Scheme’
Resumo:
Improving energy efficiency has become increasingly important in data centers in recent years to reduce the rapidly growing tremendous amounts of electricity consumption. The power dissipation of the physical servers is the root cause of power usage of other systems, such as cooling systems. Many efforts have been made to make data centers more energy efficient. One of them is to minimize the total power consumption of these servers in a data center through virtual machine consolidation, which is implemented by virtual machine placement. The placement problem is often modeled as a bin packing problem. Due to the NP-hard nature of the problem, heuristic solutions such as First Fit and Best Fit algorithms have been often used and have generally good results. However, their performance leaves room for further improvement. In this paper we propose a Simulated Annealing based algorithm, which aims at further improvement from any feasible placement. This is the first published attempt of using SA to solve the VM placement problem to optimize the power consumption. Experimental results show that this SA algorithm can generate better results, saving up to 25 percentage more energy than First Fit Decreasing in an acceptable time frame.
Resumo:
Flexible information exchange is critical to successful design-analysis integration, but current top-down, standards-based and model-oriented strategies impose restrictions that contradicts this flexibility. In this article we present a bottom-up, user-controlled and process-oriented approach to linking design and analysis applications that is more responsive to the varied needs of designers and design teams. Drawing on research into scientific workflows, we present a framework for integration that capitalises on advances in cloud computing to connect discrete tools via flexible and distributed process networks. We then discuss how a shared mapping process that is flexible and user friendly supports non-programmers in creating these custom connections. Adopting a services-oriented system architecture, we propose a web-based platform that enables data, semantics and models to be shared on the fly. We then discuss potential challenges and opportunities for its development as a flexible, visual, collaborative, scalable and open system.
Resumo:
Flexible information exchange is critical to successful design integration, but current top-down, standards-based and model-oriented strategies impose restrictions that are contradictory to this flexibility. In this paper we present a bottom-up, user-controlled and process-oriented approach to linking design and analysis applications that is more responsive to the varied needs of designers and design teams. Drawing on research into scientific workflows, we present a framework for integration that capitalises on advances in cloud computing to connect discrete tools via flexible and distributed process networks. Adopting a services-oriented system architecture, we propose a web-based platform that enables data, semantics and models to be shared on the fly. We discuss potential challenges and opportunities for the development thereof as a flexible, visual, collaborative, scalable and open system.
Resumo:
A global, online quantitative study among 300 consumers of digital technology products found the most reliable information sources were friends, family or word of mouth (WOM) from someone they knew, followed by expert product reviews, and product reviews written by other consumers. The most unreliable information sources were advertising or infomercials, automated recommendations based on purchasing patterns or retailers. While a very small number of consumers evaluated products online, rating of products and online discussions were more frequent activities. The most popular social media websites for reviews were Facebook, Twitter, Amazon and e-Bay, indicating the importance of WOM in social networks and online media spaces that feature product reviews as it is the most persuasive piece of information in both online and offline social networks. These results suggest that ‘social customers’ must be considered as an integral part of a marketing strategy.
Resumo:
Firms are moving away from decentralized regional offices. Last year the author spoke with a valuer working on the Sunshine Coast for a Brisbane firm. In years past this valuer would have left home in the morning to go to the office, as well as travelling during the day to client sites. Now they get up, have breakfast, change out of their pyjamas (if they have meetings!) and walk into their employer set-up home office to ‘punch-in’. Apart from travel for essential meetings at head office, or for the purpose of on-site inspections, they can attend work, engage with colleagues and clients and never leave home. While this practice may be a cost saving to the firm and a commuter-friendly way of working, it raises a range of issues to be managed.
Resumo:
Using Monte Carlo simulation for radiotherapy dose calculation can provide more accurate results when compared to the analytical methods usually found in modern treatment planning systems, especially in regions with a high degree of inhomogeneity. These more accurate results acquired using Monte Carlo simulation however, often require orders of magnitude more calculation time so as to attain high precision, thereby reducing its utility within the clinical environment. This work aims to improve the utility of Monte Carlo simulation within the clinical environment by developing techniques which enable faster Monte Carlo simulation of radiotherapy geometries. This is achieved principally through the use new high performance computing environments and simpler alternative, yet equivalent representations of complex geometries. Firstly the use of cloud computing technology and it application to radiotherapy dose calculation is demonstrated. As with other super-computer like environments, the time to complete a simulation decreases as 1=n with increasing n cloud based computers performing the calculation in parallel. Unlike traditional super computer infrastructure however, there is no initial outlay of cost, only modest ongoing usage fees; the simulations described in the following are performed using this cloud computing technology. The definition of geometry within the chosen Monte Carlo simulation environment - Geometry & Tracking 4 (GEANT4) in this case - is also addressed in this work. At the simulation implementation level, a new computer aided design interface is presented for use with GEANT4 enabling direct coupling between manufactured parts and their equivalent in the simulation environment, which is of particular importance when defining linear accelerator treatment head geometry. Further, a new technique for navigating tessellated or meshed geometries is described, allowing for up to 3 orders of magnitude performance improvement with the use of tetrahedral meshes in place of complex triangular surface meshes. The technique has application in the definition of both mechanical parts in a geometry as well as patient geometry. Static patient CT datasets like those found in typical radiotherapy treatment plans are often very large and present a significant performance penalty on a Monte Carlo simulation. By extracting the regions of interest in a radiotherapy treatment plan, and representing them in a mesh based form similar to those used in computer aided design, the above mentioned optimisation techniques can be used so as to reduce the time required to navigation the patient geometry in the simulation environment. Results presented in this work show that these equivalent yet much simplified patient geometry representations enable significant performance improvements over simulations that consider raw CT datasets alone. Furthermore, this mesh based representation allows for direct manipulation of the geometry enabling motion augmentation for time dependant dose calculation for example. Finally, an experimental dosimetry technique is described which allows the validation of time dependant Monte Carlo simulation, like the ones made possible by the afore mentioned patient geometry definition. A bespoke organic plastic scintillator dose rate meter is embedded in a gel dosimeter thereby enabling simultaneous 3D dose distribution and dose rate measurement. This work demonstrates the effectiveness of applying alternative and equivalent geometry definitions to complex geometries for the purposes of Monte Carlo simulation performance improvement. Additionally, these alternative geometry definitions allow for manipulations to be performed on otherwise static and rigid geometry.
Resumo:
Big Data is a rising IT trend similar to cloud computing, social networking or ubiquitous computing. Big Data can offer beneficial scenarios in the e-health arena. However, one of the scenarios can be that Big Data needs to be kept secured for a long period of time in order to gain its benefits such as finding cures for infectious diseases and protecting patient privacy. From this connection, it is beneficial to analyse Big Data to make meaningful information while the data is stored securely. Therefore, the analysis of various database encryption techniques is essential. In this study, we simulated 3 types of technical environments, namely, Plain-text, Microsoft Built-in Encryption, and custom Advanced Encryption Standard, using Bucket Index in Data-as-a-Service. The results showed that custom AES-DaaS has a faster range query response time than MS built-in encryption. Furthermore, while carrying out the scalability test, we acknowledged that there are performance thresholds depending on physical IT resources. Therefore, for the purpose of efficient Big Data management in eHealth it is noteworthy to examine their scalability limits as well even if it is under a cloud computing environment. In addition, when designing an e-health database, both patient privacy and system performance needs to be dealt as top priorities.
Resumo:
MapReduce is a computation model for processing large data sets in parallel on large clusters of machines, in a reliable, fault-tolerant manner. A MapReduce computation is broken down into a number of map tasks and reduce tasks, which are performed by so called mappers and reducers, respectively. The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation in cloud computing. From the computational point of view, the mappers/reducers placement problem is a generation of the classical bin packing problem, which is NP-complete. Thus, in this paper we propose a new heuristic algorithm for the mappers/reducers placement problem in cloud computing and evaluate it by comparing with other several heuristics on solution quality and computation time by solving a set of test problems with various characteristics. The computational results show that our heuristic algorithm is much more efficient than the other heuristics and it can obtain a better solution in a reasonable time. Furthermore, we verify the effectiveness of our heuristic algorithm by comparing the mapper/reducer placement for a benchmark problem generated by our heuristic algorithm with a conventional mapper/reducer placement which puts a fixed number of mapper/reducer on each machine. The comparison results show that the computation using our mapper/reducer placement is much cheaper than the computation using the conventional placement while still satisfying the computation deadline.
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation technology. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches consider the energy consumption by physical machines only, but do not consider the energy consumption in communication network, in a data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement. In our preliminary research, we have proposed a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both physical machines and the communication network in a data center. Aiming at improving the performance and efficiency of the genetic algorithm, this paper presents a hybrid genetic algorithm for the energy-efficient virtual machine placement problem. Experimental results show that the hybrid genetic algorithm significantly outperforms the original genetic algorithm, and that the hybrid genetic algorithm is scalable.
Resumo:
Modern health information systems can generate several exabytes of patient data, the so called "Health Big Data", per year. Many health managers and experts believe that with the data, it is possible to easily discover useful knowledge to improve health policies, increase patient safety and eliminate redundancies and unnecessary costs. The objective of this paper is to discuss the characteristics of Health Big Data as well as the challenges and solutions for health Big Data Analytics (BDA) – the process of extracting knowledge from sets of Health Big Data – and to design and evaluate a pipelined framework for use as a guideline/reference in health BDA.
Resumo:
With the introduction of the Personally Controlled Health Record (PCEHR), the Australian public is being asked to accept greater responsibility for their healthcare by taking an active role in the management of personal health information. Although well designed, constructed and intentioned, policy and privacy concerns have resulted in an eHealth model that may impact future health sharing requirements. Hence, as a case study for a consumer eHealth initative in the Australian context, eHealth-as-a-Service (eHaaS) serves as a disruptive step in in the aggregation and transformation of health information for use as real-world knowledge. The strategic value of extending the community Health Record Bank (HRB) model lies in the ability to automatically draw on a multitude of relevant data repositories and sources to create a single source of the truth and to engage market forces to create financial sustainability. The opportunity to transform the beleaguered Australian PCEHR into a realisable and sustainable technology consumption model for patient safety is explored. Moreover, the current clerical focus of healthcare practitioners acting in the role of de facto record keepers is renegotiated to establish a shared knowledge creation landscape of action for safer patient interventions. To achieve this potential however requires a platform that will facilitate efficient and trusted unification of all health information available in real-time across the continuum of care. eHaaS provides a sustainable environment and encouragement to realise this potential.
Resumo:
A commitment in 2010 by the Australian Federal Government to spend $466.7 million dollars on the implementation of personally controlled electronic health records (PCEHR) heralded a shift to a more effective and safer patient centric eHealth system. However, deployment of the PCEHR has met with much criticism, emphasised by poor adoption rates over the first 12 months of operation. An indifferent response by the public and healthcare providers largely sceptical of its utility and safety speaks to the complex sociotechnical drivers and obstacles inherent in the embedding of large (national) scale eHealth projects. With government efforts to inflate consumer and practitioner engagement numbers giving rise to further consumer disillusionment, broader utilitarian opportunities available with the PCEHR are at risk. This paper discusses the implications of establishing the PCEHR as the cornerstone of a holistic eHealth strategy for the aggregation of longitudinal patient information. A viewpoint is offered that the real value in patient data lies not just in the collection of data but in the integration of this information into clinical processes within the framework of a commoditised data-driven approach. Consideration is given to the eHealth-as-a-Service (eHaaS) construct as a disruptive next step for co-ordinated individualised healthcare in the Australian context.
Resumo:
With the introduction of the Personally Controlled Health Record (PCEHR), the Australian public is being asked to accept greater responsibility for their healthcare. Although well designed, constructed and intentioned, policy and privacy concerns have resulted in an eHealth model that may impact future health information sharing requirements. Thus an opportunity to transform the beleaguered Australian PCEHR into a sustainable on-demand technology consumption model for patient safety must be explored further. Moreover, the current clerical focus of healthcare practitioners must be renegotiated to establish a shared knowledge creation landscape of action for safer patient interventions. To achieve this potential however requires a platform that will facilitate efficient and trusted unification of all health information available in real-time across the continuum of care. As a conceptual paper, the goal of the authors is to deliver insights into the antecedents of usage influencing superior patient outcomes within an eHealth-as-a-Service framework. To achieve this, the paper attempts to distil key concepts and identify common themes drawn from a preliminary literature review of eHealth and cloud computing concepts, specifically cloud service orchestration to establish a conceptual framework and a research agenda. Initial findings support the authors’ view that an eHealth-as-a-Service (eHaaS) construct will serve as a disruptive paradigm shift in the aggregation and transformation of health information for use as real-world knowledge in patient care scenarios. Moreover, the strategic value of extending the community Health Record Bank (HRB) model lies in the ability to automatically draw on a multitude of relevant data repositories and sources to create a single source of practice based evidence and to engage market forces to create financial sustainability.
Resumo:
Monitoring the environment with acoustic sensors is an effective method for understanding changes in ecosystems. Through extensive monitoring, large-scale, ecologically relevant, datasets can be produced that can inform environmental policy. The collection of acoustic sensor data is a solved problem; the current challenge is the management and analysis of raw audio data to produce useful datasets for ecologists. This paper presents the applied research we use to analyze big acoustic datasets. Its core contribution is the presentation of practical large-scale acoustic data analysis methodologies. We describe details of the data workflows we use to provide both citizen scientists and researchers practical access to large volumes of ecoacoustic data. Finally, we propose a work in progress large-scale architecture for analysis driven by a hybrid cloud-and-local production-grade website.