235 resultados para Chemical plants
Resumo:
Delays are an important feature in temporal models of genetic regulation due to slow biochemical processes, such as transcription and translation. In this paper, we show how to model intrinsic noise effects in a delayed setting by either using a delay stochastic simulation algorithm (DSSA) or, for larger and more complex systems, a generalized Binomial τ-leap method (Bτ-DSSA). As a particular application, we apply these ideas to modeling somite segmentation in zebra fish across a number of cells in which two linked oscillatory genes (her1 and her7) are synchronized via Notch signaling between the cells.
Resumo:
Recently the application of the quasi-steady-state approximation (QSSA) to the stochastic simulation algorithm (SSA) was suggested for the purpose of speeding up stochastic simulations of chemical systems that involve both relatively fast and slow chemical reactions [Rao and Arkin, J. Chem. Phys. 118, 4999 (2003)] and further work has led to the nested and slow-scale SSA. Improved numerical efficiency is obtained by respecting the vastly different time scales characterizing the system and then by advancing only the slow reactions exactly, based on a suitable approximation to the fast reactions. We considerably extend these works by applying the QSSA to numerical methods for the direct solution of the chemical master equation (CME) and, in particular, to the finite state projection algorithm [Munsky and Khammash, J. Chem. Phys. 124, 044104 (2006)], in conjunction with Krylov methods. In addition, we point out some important connections to the literature on the (deterministic) total QSSA (tQSSA) and place the stochastic analogue of the QSSA within the more general framework of aggregation of Markov processes. We demonstrate the new methods on four examples: Michaelis–Menten enzyme kinetics, double phosphorylation, the Goldbeter–Koshland switch, and the mitogen activated protein kinase cascade. Overall, we report dramatic improvements by applying the tQSSA to the CME solver.
Resumo:
Biochemical reactions underlying genetic regulation are often modelled as a continuous-time, discrete-state, Markov process, and the evolution of the associated probability density is described by the so-called chemical master equation (CME). However the CME is typically difficult to solve, since the state-space involved can be very large or even countably infinite. Recently a finite state projection method (FSP) that truncates the state-space was suggested and shown to be effective in an example of a model of the Pap-pili epigenetic switch. However in this example, both the model and the final time at which the solution was computed, were relatively small. Presented here is a Krylov FSP algorithm based on a combination of state-space truncation and inexact matrix-vector product routines. This allows larger-scale models to be studied and solutions for larger final times to be computed in a realistic execution time. Additionally the new method computes the solution at intermediate times at virtually no extra cost, since it is derived from Krylov-type methods for computing matrix exponentials. For the purpose of comparison the new algorithm is applied to the model of the Pap-pili epigenetic switch, where the original FSP was first demonstrated. Also the method is applied to a more sophisticated model of regulated transcription. Numerical results indicate that the new approach is significantly faster and extendable to larger biological models.
Resumo:
Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.
Resumo:
Solar ultraviolet (UV) radiation causes a range of skin disorders as well as affecting vision and the immune system. It also inhibits development of plants and animals. UV radiation monitoring is used routinely in some locations in order to alert the population to harmful solar radiation levels. There is ongoing research to develop UV-selective-sensors [1–3]. A personal, inexpensive and simple UV-selective-sensor would be desirable to measure UV intensity exposure. A prototype of such a detector has been developed and evaluated in our laboratory. It comprises a sealed two-electrode photoelectrochemical cell (PEC) based on nanocrystalline TiO2. This abundant semiconducting oxide, which is innocuous and very sta-ble, is the subject of intense study at present due to its application in dye sensitized solar cells (DSSC) [4]. Since TiO2 has a wide band gap (EG = 3.0 eV for rutile and EG = 3.2 eV for anatase), it is inher-ently UV-selective, so that UV filters are not required. This further reduces the cost of the proposed photodetector in comparison with conventional silicon detectors. The PEC is a semiconductor–electrolyte device that generates a photovoltage when it is illuminated and a corresponding photocur-rent if the external circuit is closed. The device does not require external bias, and the short circuit current is generally a linear function of illumination intensity. This greatly simplifies the elec-trical circuit needed when using the PEC as a photodetector. DSSC technology, which is based on a PEC containing nanocrystalline TiO2 sensitized with a ruthenium dye, holds out the promise of solar cells that are significantly cheaper than traditional silicon solar cells. The UV-sensor proposed in this paper relies on the cre-ation of electron–hole pairs in the TiO2 by UV radiation, so that it would be even cheaper than a DSSC since no sensitizer dye is needed. Although TiO2 has been reported as a suitable material for UV sensing [3], to the best of our knowledge, the PEC configuration described in the present paper is a new approach. In the present study, a novel double-layer TiO2 structure has been investigated. Fabrication is based on a simple and inexpensive technique for nanostructured TiO2 deposition using microwave-activated chemical bath deposition (MW-CBD) that has been reported recently [5]. The highly transparent TiO2 (anatase) films obtained are densely packed, and they adhere very well to the transparent oxide (TCO) substrate [6]. These compact layers have been studied as contacting layers in double-layer TiO2 structures for DSSC since improvement of electron extraction at the TiO2–TCO interface is expected [7]. Here we compare devices incorporating a single mesoporous nanocrystalline TiO2 structure with devices based on a double structure in which a MW-CBD film is situated between the TCO and the mesoporous nanocrystalline TiO2 layer. Besides improving electron extraction, this film could also help to block recombination of electrons transferred to the TCO with oxidized species in the electrolyte, as has been reported in the case of DSSC for compact TiO2 films obtained by other deposition tech-niques [8,9]. The two types of UV-selective sensors were characterized in detail. The current voltage characteristics, spectral response, inten-sity dependence of short circuit current and response times were measured and analyzed in order to evaluate the potential of sealed mesoporous TiO2-based photoelectrochemical cells (PEC) as low cost personal UV-photodetectors.
Resumo:
Zeolite-based technology can provide a cost effective solution for stormwater treatment for the removal of toxic heavy metals under increasing demand of safe water from alternative sources. This paper reviews the currently available knowledge relating to the effect of properties of zeolites such as pore size, surface area and Si:Al ratio and the physico-chemical conditions of the system such as pH, temperature, initial metal concentration and zeolite concentration on heavy metal removal performance. The primary aims are, to consolidate available knowledge and identify knowledge gaps. It was established that an in-depth understanding of operational issues such as, diffusion of metal ions into the zeolite pore structure, pore clogging, zeolite surface coverage by particulates in stormwater as well as the effect of pH on stormwater quality in the presence of zeolites is essential for developing a zeolite-based technology for the treatment of polluted stormwater. The optimum zeolite concentration to treat typical volumes of stormwater and initial heavy metal concentrations in stormwater should also be considered as operational issues in this regard. Additionally, leaching of aluminium and sodium ions from the zeolite structure to solution were identified as key issues requiring further research in the effort to develop cost effective solutions for the removal of heavy metals from stormwater.
Resumo:
Partition of heavy metals between particulate and dissolve fraction of stormwater primarily depends on the adsorption characteristics of solids particles. Moreover, the bioavailability of heavy metals is also influenced by the adsorption behaviour of solids. However, due to the lack of fundamental knowledge in relation to the heavy metals adsorption processes of road deposited solids, the effectiveness of stormwater management strategies can be limited. The research study focused on the investigation of the physical and chemical parameters of solids on urban road surfaces and, more specifically, on heavy metal adsorption to solids. Due to the complex nature of heavy metal interaction with solids, a substantial database was generated through a series of field investigations and laboratory experiments. The study sites for the build-up pollutant sample collection were selected from four urbanised suburbs located in a major river catchment. Sixteen road sites were selected from these suburbs and represented typical industrial, commercial and residential land uses. Build-up pollutants were collected using a wet and dry vacuum collection technique which was specially designed to improve fine particle collection. Roadside soil samples were also collected from each suburb for comparison with the road surface solids. The collected build-up solids samples were separated into four particle size ranges and tested for a range of physical and chemical parameters. The solids build-up on road surfaces contained a high fraction (70%) of particles smaller than 150ìm, which are favourable for heavy metal adsorption. These solids particles predominantly consist of soil derived minerals which included quartz, albite, microcline, muscovite and chlorite. Additionally, a high percentage of amorphous content was also identified in road deposited solids. In comparing the mineralogical data of surrounding soil and road deposited solids, it was found that about 30% of the solids consisted of particles generated from traffic related activities on road surfaces. Significant difference in mineralogical composition was noted in different particle sizes of build-up solids. Fine solids particles (<150ìm) consisted of a clayey matrix and high amorphous content (in the region of 40%) while coarse particles (>150ìm) consisted of a sandy matrix at all study sites, with about 60% quartz content. Due to these differences in mineralogical components, particles larger than and smaller than 150ìm had significant differences in their specific surface area (SSA) and effective cation exchange capacity (ECEC). These parameters, in turn, exert a significant influence on heavy metal adsorption. Consequently, heavy metal content in >150ìm particles was lower than in the case of fine particles. The particle size range <75ìm had the highest heavy metal content, corresponding with its high clay forming minerals, high organic matter and low quartz content which increased the SSA, ECEC and the presence of Fe, Al and Mn oxides. The clay forming minerals, high organic matter and Fe, Al and Mn oxides create distinct groups of charge sites on solids surfaces and exhibit different adsorption mechanisms and bond strength, between heavy metal elements and charge sites. Therefore, the predominance of these factors in different particle sizes leads to different heavy metal adsorption characteristics. Heavy metals show preference for association with clay forming minerals in fine solids particles, whilst in coarse particles heavy metals preferentially associate with organic matter. Although heavy metal adsorption to amorphous material is very low, the heavy metals embedded in traffic related materials have a potential impact on stormwater quality.Adsorption of heavy metals is not confined to an individual type of charge site in solids, whereas specific heavy metal elements show preference for adsorption to several different types of charge sites in solids. This is attributed to the dearth of preferred binding sites and the inability to reach the preferred binding sites due to competition between different heavy metal species. This confirms that heavy metal adsorption is significantly influenced by the physical and chemical parameters of solids that lead to a heterogeneity of surface charge sites. The research study highlighted the importance of removal of solids particles from stormwater runoff before they enter into receiving waters to reduce the potential risk posed by the bioavailability of heavy metals. The bioavailability of heavy metals not only results from the easily mobile fraction bound to the solids particles, but can also occur as a result of the dissolution of other forms of bonds by chemical changes in stormwater or microbial activity. Due to the diversity in the composition of the different particle sizes of solids and the characteristics and amount of charge sites on the particle surfaces, investigations using bulk solids are not adequate to gain an understanding of the heavy metal adsorption processes of solids particles. Therefore, the investigation of different particle size ranges is recommended for enhancing stormwater quality management practices.
Resumo:
Light plays a unique role for plants as it is both a source of energy for growth and a signal for development. Light captured by the pigments in the light harvesting complexes is used to drive the synthesis of the chemical energy required for carbon assimilation. The light perceived by photoreceptors activates effectors, such as transcription factors (TFs), which modulate the expression of light-responsive genes. Recently, it has been speculated that increasing the photosynthetic rate could further improve the yield potential of three carbon (C3) crops such as wheat. However, little is currently known about the transcriptional regulation of photosynthesis genes, particularly in crop species. Nuclear factor Y (NF-Y) TF is a functionally diverse regulator of growth and development in the model plant species, with demonstrated roles in embryo development, stress response, flowering time and chloroplast biogenesis. Furthermore, a light-responsive NF-Y binding site (CCAAT-box) is present in the promoter of a spinach photosynthesis gene. As photosynthesis genes are co-regulated by light and co-regulated genes typically have similar regulatory elements in their promoters, it seems likely that other photosynthesis genes would also have light-responsive CCAAT-boxes. This provided the impetus to investigate the NF-Y TF in bread wheat. This thesis is focussed on wheat NF-Y members that have roles in light-mediated gene regulation with an emphasis on their involvement in the regulation of photosynthesis genes. NF-Y is a heterotrimeric complex, comprised of the three subunits NF-YA, NF-YB and NF-YC. Unlike the mammalian and yeast counterparts, each of the three subunits is encoded by multiple genes in Arabidopsis. The initial step taken in this study was the identification of the wheat NF-Y family (Chapter 3). A search of the current wheat nucleotide sequence databases identified 37 NF-Y genes (10 NF-YA, 11 NF-YB, 14 NF-YC & 2 Dr1). Phylogenetic analysis revealed that each of the three wheat NF-Y (TaNF-Y) subunit families could be divided into 4-5 clades based on their conserved core regions. Outside of the core regions, eleven motifs were identified to be conserved between Arabidopsis, rice and wheat NF-Y subunit members. The expression profiles of TaNF-Y genes were constructed using quantitative real-time polymerase chain reaction (RT-PCR). Some TaNF-Y subunit members had little variation in their transcript levels among the organs, while others displayed organ-predominant expression profiles, including those expressed mainly in the photosynthetic organs. To investigate their potential role in light-mediated gene regulation, the light responsiveness of the TaNF-Y genes were examined (Chapters 4 and 5). Two TaNF-YB and five TaNF-YC members were markedly upregulated by light in both the wheat leaves and seedling shoots. To identify the potential target genes of the light-upregulated NF-Y subunit members, a gene expression correlation analysis was conducted using publically available Affymetrix Wheat Genome Array datasets. This analysis revealed that the transcript expression levels of TaNF-YB3 and TaNF-YC11 were significantly correlated with those of photosynthesis genes. These correlated express profiles were also observed in the quantitative RT-PCR dataset from wheat plants grown under light and dark conditions. Sequence analysis of the promoters of these wheat photosynthesis genes revealed that they were enriched with potential NF-Y binding sites (CCAAT-box). The potential role of TaNF-YB3 in the regulation of photosynthetic genes was further investigated using a transgenic approach (Chapter 5). Transgenic wheat lines constitutively expressing TaNF-YB3 were found to have significantly increased expression levels of photosynthesis genes, including those encoding light harvesting chlorophyll a/b-binding proteins, photosystem I reaction centre subunits, a chloroplast ATP synthase subunit and glutamyl-tRNA reductase (GluTR). GluTR is a rate-limiting enzyme in the chlorophyll biosynthesis pathway. In association with the increased expression of the photosynthesis genes, the transgenic lines had a higher leaf chlorophyll content, increased photosynthetic rate and had a more rapid early growth rate compared to the wild-type wheat. In addition to its role in the regulation of photosynthesis genes, TaNF-YB3 overexpression lines flower on average 2-days earlier than the wild-type (Chapter 6). Quantitative RT-PCR analysis showed that there was a 13-fold increase in the expression level of the floral integrator, TaFT. The transcript levels of other downstream genes (TaFT2 and TaVRN1) were also increased in the transgenic lines. Furthermore, the transcript levels of TaNF-YB3 were significantly correlated with those of constans (CO), constans-like (COL) and timing of chlorophyll a/b-binding (CAB) expression 1 [TOC1; (CCT)] domain-containing proteins known to be involved in the regulation of flowering time. To summarise the key findings of this study, 37 NF-Y genes were identified in the crop species wheat. An in depth analysis of TaNF-Y gene expression profiles revealed that the potential role of some light-upregulated members was in the regulation of photosynthetic genes. The involvement of TaNF-YB3 in the regulation of photosynthesis genes was supported by data obtained from transgenic wheat lines with increased constitutive expression of TaNF-YB3. The overexpression of TaNF-YB3 in the transgenic lines revealed this NF-YB member is also involved in the fine-tuning of flowering time. These data suggest that the NF-Y TF plays an important role in light-mediated gene regulation in wheat.
Resumo:
The Bcl-2-associated athanogene (BAG) family is an evolutionarily conserved, multifunctional group of cochaperones that perform diverse cellular functions ranging from proliferation to growth arrest and cell death in yeast, in mammals, and, as recently observed, in plants. The Arabidopsis genome contains seven homologs of the BAG family, including four with domain organization similar to animal BAGs. In the present study we show that an Arabidopsis BAG, AtBAG7, is a uniquely localized endoplasmic reticulum (ER) BAG that is necessary for the proper maintenance of the unfolded protein response (UPR). AtBAG7was shown to interact directly in vivo with themolecular chaperone, AtBiP2, by bimolecular fluorescence complementation assays, and the interaction was confirmed by yeast two-hybrid assay. Treatment with an inducer of UPR, tunicamycin, resulted in accelerated cell death of AtBAG7-null mutants. Furthermore, AtBAG7 knockouts were sensitive to known ER stress stimuli, heat and cold. In these knockouts heat sensitivity was reverted successfully to the wild-type phenotype with the addition of the chemical chaperone, tauroursodexycholic acid (TUDCA). Real-time PCR of ER stress proteins indicated that the expression of the heat-shock protein, AtBiP3, is selectively up-regulated in AtBAG7-null mutants upon heat and cold stress. Our results reveal an unexpected diversity of the plant's BAG gene family and suggest that AtBAG7 is an essential component of the UPR during heat and cold tolerance, thus confirming the cytoprotective role of plant BAGs.
Resumo:
This study undertook a physico-chemical characterisation of particle emissions from a single compression ignition engine operated at one test mode with 3 biodiesel fuels made from 3 different feedstocks (i.e. soy, tallow and canola) at 4 different blend percentages (20%, 40%, 60% and 80%) to gain insights into their particle-related health effects. Particle physical properties were inferred by measuring particle number size distributions both with and without heating within a thermodenuder (TD) and also by measuring particulate matter (PM) emission factors with an aerodynamic diameter less than 10 μm (PM10). The chemical properties of particulates were investigated by measuring particle and vapour phase Polycyclic Aromatic Hydrocarbons (PAHs) and also Reactive Oxygen Species (ROS) concentrations. The particle number size distributions showed strong dependency on feedstock and blend percentage with some fuel types showing increased particle number emissions, whilst others showed particle number reductions. In addition, the median particle diameter decreased as the blend percentage was increased. Particle and vapour phase PAHs were generally reduced with biodiesel, with the results being relatively independent of the blend percentage. The ROS concentrations increased monotonically with biodiesel blend percentage, but did not exhibit strong feedstock variability. Furthermore, the ROS concentrations correlated quite well with the organic volume percentage of particles – a quantity which increased with increasing blend percentage. At higher blend percentages, the particle surface area was significantly reduced, but the particles were internally mixed with a greater organic volume percentage (containing ROS) which has implications for using surface area as a regulatory metric for diesel particulate matter (DPM) emissions.
Resumo:
A simple phenomenological model for the relationship between structure and composition of the high Tc cuprates is presented. The model is based on two simple crystal chemistry principles: unit cell doping and charge balance within unit cells. These principles are inspired by key experimental observations of how the materials accommodate large deviations from stoichiometry. Consistent explanations for significant HTSC properties can be explained without any additional assumptions while retaining valuable insight for geometric interpretation. Combining these two chemical principles with a review of Crystal Field Theory (CFT) or Ligand Field Theory (LFT), it becomes clear that the two oxidation states in the conduction planes (typically d8 and d9) belong to the most strongly divergent d-levels as a function of deformation from regular octahedral coordination. This observation offers a link to a range of coupling effects relating vibrations and spin waves through application of Hund’s rules. An indication of this model’s capacity to predict physical properties for HTSC is provided and will be elaborated in subsequent publications. Simple criteria for the relationship between structure and composition in HTSC systems may guide chemical syntheses within new material systems.
Resumo:
A time-resolved inverse spatially offset Raman spectrometer was constructed for depth profiling of Raman-active substances under both the lab and the field environments. The system operating principles and performance are discussed along with its advantages relative to traditional continuous wave spatially offset Raman spectrometer. The developed spectrometer uses a combination of space- and time-resolved detection in order to obtain high-quality Raman spectra from substances hidden behind coloured opaque surface layers, such as plastic and garments, with a single measurement. The time-gated spatially offset Raman spectrometer was successfully used to detect concealed explosives and drug precursors under incandescent and fluorescent background light as well as under daylight. The average screening time was 50 s per measurement. The excitation energy requirements were relatively low (20 mW) which makes the probe safe for screening hazardous substances. The unit has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than previous picosecond-based systems, to provide a functional platform for in-line or in-field sensing of chemical substances.
Resumo:
Zeolite N, a zeolite referred to in earlier publications as MesoLite, is made by caustic reaction of kaolin at temperatures between 80 °C and 95 °C. This material has a very high cation exchange capacity (CEC ≈ 500 meq/100 g). Soil column leaching experiments have shown that K-zeolite N additions greatly reduce leaching of NH4+ fertilisers but the agronomic effectiveness of the retained K+ and NH4+ is unknown. To measure the bioavailability of K in this zeolite, wheat was grown in a glasshouse with K-zeolite N as the K fertiliser in highly-leached and non-leached pots for four weeks and compared with a soluble K fertiliser (KCl). The plants grown in non-leached pots and fertilised with K-zeolite N were slightly larger than those grown with KCl. The elemental compositions in the plants were similar except for Si being significantly more concentrated in the plants supplied with K-zeolite N. Thus K-zeolite N may be an effective K-fertiliser. Plants grown in highly-leached pots were significantly smaller than those grown in non-leached pots. Plants grown in highly-leached pots were severely K deficient as half of the K from both KCl and K-zeolite N was leached from the pots within three days.
Resumo:
The likely phenological responses of plants to climate warming can be measured through experimental manipulation of field sites, but results are rarely validated against year-to-year changes in climate. Here, we describe the response of 1-5 years of experimental warming on phenology (budding, flowering and seed maturation) of six common subalpine plant species in the Australian Alps using the International Tundra Experiment (ITEX) protocol.2. Phenological changes in some species (particularly the forb Craspedia jamesii) were detected in experimental plots within a year of warming, whereas changes in most other species (the forb Erigeron bellidioides, the shrub Asterolasia trymalioides and the graminoids Carex breviculmis and Poa hiemata) did not develop until after 2-4 years; thus, there appears to be a cumulative effect of warming for some species across multiple years.3. There was evidence of changes in the length of the period between flowering and seed maturity in one species (P. hiemata) that led to a similar timing of seed maturation, suggesting compensation.4. Year-to-year variation in phenology was greater than variation between warmed and control plots and could be related to differences in thawing degree days (particularly, for E. bellidioides) due to earlier timing of budding and other events under warmer conditions. However, in Carex breviculmis, there was no association between phenology and temperature changes across years.5. These findings indicate that, although phenological changes occurred earlier in response to warming in all six species, some species showed buffered rather than immediate responses.6. Synthesis. Warming in ITEX open-top chambers in the Australian Alps produced earlier budding, flowering and seed set in several alpine species. Species also altered the timing of these events, particularly budding, in response to year-to-year temperature variation. Some species responded immediately, whereas in others the cumulative effects of warming across several years were required before a response was detected.